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A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage
sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were
adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the
sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation.
Meanwhile, the SRF declined from 6.45 × 1010 to 2.07 × 1010 s2/g, and MSC decreased from
91.42% to 87.66%. The bioleached sludge was further conditionedwith Fenton oxidation. From
an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L,
respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF,
volatile solids reduction, and MSC were 3.43 × 108 s2/g, 36.93%, and 79.58%, respectively. The
stability and settleability of sewage sludge were both improved significantly. Besides,
the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering
the sewage sludge than traditional Fenton oxidation. The sludge conditioningmechanisms by
bioleaching-Fenton oxidationmightmainly include the flocculation effects and the releases of
extracellular polymeric substances–bound water and intercellular water.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Activated sludge process plays an important role in worldwide
wastewater treatment (Chang et al., 2001), but it has a serious
drawback of producing huge amounts of excess sludge (Feng et al.,
2009). The water content of excess sludge is generally over 98%,
which leads to the difficult dewatering (Vaxelaire and Cezac,
2004). Therefore, the treatment of excess sludge has already
become a serious environmental problem in wastewater treat-
ment plants. It has been reported that the performance of sludge
dewatering significantly depends on sludge properties, such as
particle size, extracellular polymeric substances (EPS), water
ue@hnu.edu.cn (Panyue Z

o-Environmental Science
content, etc. (Karr and Keinath, 1978; Mikkelsen and Keiding,
2002; Neyens and Baeyens, 2003; Novak et al., 1998). Sludge
dewatering has been pointed out as the most expensive and the
least understood process (Bruus et al., 1992), and the cost of
sludge treatment and disposal nearly accounts for as high as 50%–
60% of the entire operating cost of wastewater treatment plants
(Egemen et al., 2001). With the development of stringent environ-
mental regulations, more efficient sludge treatment technologies
are demanded.

Advanced oxidation processes for sludge conditioning have
gained the worldwide attention in recent years (Tony et al., 2009).
Fenton oxidation as one of the advanced oxidation processes has
jes
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Fig. 1 – pH change during inocula preparation and sludge
bioleaching process. Experimental condition: sulfur powder
dosage = 0.31 mol/L for inocula preparation, sulfur powder
dosage = 0.09 mol/L for sludge bioleaching.

38 J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 2 8 ( 2 0 1 5 ) 3 7 – 4 2
been proved to be a promising technology for conditioning sludge.
During the last decade, many efforts have beenmade to explore the
possibility of sludge dewatering by Fenton oxidation, and the
experimental results indicated that Fenton oxidation had a positive
effect on sludge dewatering (Buyukkamaci, 2004; Debowski et al.,
2008; Erden and Filibeli, 2010; Kaynak and Filibeli, 2008; Lu et al.,
2003). In addition, itwas reported that Fentonpretreatment played a
positive role in sludge minimization (Kaynak and Filibeli, 2008).
Through Fenton pretreatment, the anaerobic biodegradability of
biological sludgewas also improved significantly (Erden and Filibeli,
2010; Kaynak and Filibeli, 2008). As a result, the higher volatile solid
(VS) reduction and higher biogas productionwere achieved (Kaynak
and Filibeli, 2008).

Traditionally, inorganic acid is always needed in Fenton
reaction to reduce sludge pH to achieve the desired efficiency. In
that case, large amounts of inorganic acid for sludge conditioning
and further alkali for neutralizing are required, which leads to
high operation cost of Fenton treatment. Bioleaching as one of the
microbial technologies for sludge treatment may serve as a
substitution method of conventional chemical acidification,
because the sludge pH can decline to the optimal pH range for
Fenton reaction through bioleaching. In addition, it is widely
accepted that bioleaching is superior in leaching heavy metals
(Benmoussa et al., 1997; Couillard and Mercier, 1991; Kim et al.,
2005), destroying and destructing pathogens (Benmoussa et al.,
1997; Couillard and Mercier, 1991), controlling odor (Filali-Meknassi
et al., 2000), reducing volumeand improving stability (Benmoussa et
al., 1997). Therefore, bioleaching has gained increasing attention to
sludge conditioning in recent years.

In our previous studies, bioleaching combined with Fenton-like
oxidationwas proved to be efficient in removing heavymetals from
sewage sludge (Zhu et al., 2013). In this study, we continuously
investigated the possibility of bioleaching combined with Fenton
oxidation to improve sludge dewaterability. The specific resistance
to filtration (SRF), moisture of sludge cake (MSC), supernatant
volume, and VS reduction were adopted to characterize the treated
sludge. Bioleachingprovides a suitable reaction condition for Fenton
oxidation, which has been scarcely reported. The main objective of
this study was to evaluate the feasibility and efficiency of the
combined process for sludge conditioning and dewatering.
1. Materials and methods

1.1. Sewage sludge

Sewage sludge was collected from sludge thickener of a
full-scale wastewater treatment plant in Changsha, China.
After gravity settling for 12 hr, the supernatant was removed,
Table 1 – Properties of raw sludge and bioleached sludge.

Sludge pH TS
(mg/L)

VS
(mg/L)

Sludge sample 6.83 15461 10248
Bioleached sludge 2.23 14,503 9449

TS, VS, MSC, and SRF denote total solids, volatile solids, moisture of slud
and then the sludge as experimental sample was stored at 4°C
in a refrigerator. Before conditioning experiments, the sludge
sample was kept in a water bath at 20°C for 30 min. Some
properties of raw sludge are given in Table 1.

All chemicals used in this study were of analytic grade, and
purchased from Sinopharm Chemical Reagent Co. Ltd.

1.2. Inocula preparation

It has been reported that pure Thiobacillus for bioleaching
could be isolated from sewage sludge or acid wastewater
(Wong et al., 2004). Thus, fresh sewage sludge as the seed
sludge was applied to enrich and culture the indigenous
acidophilic Thiobacillus, which was collected from the sludge
thickener in the same wastewater treatment plant. All
experiments were performed at ambient temperature of
28°C. Inocula preparation was described in detail as follows.
Firstly, sulfur powders of 0.31 mol/L as the energy substance
were added into a 250 mL Erlenmeyer flask (Zhengzhou
Zhongtian Chemical Instrument Co., Ltd., Zhengzhou, China)
filled with feed sludge of 100 mL. Then the flask was agitated
in an orbital shaker (ZHWY-1102, Shanghai Zhicheng Analyt-
ical Instrument Co., Ltd., Shanghai, China) at a shaking speed
of 180 r/min until the pH of seed sludge dropped to below 2.0.
Subsequently, the acidified sludge of 10 mL was transferred
into a 250 mL Erlenmeyer flask filled with 90 mL feed sludge,
under the same conditions the Thiobacillus were enriched and
cultured twice again. After being cultured and enriched
jes
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Supernatant volume
(mL)

MSC
(%)

SRF
(s2/g)

2.0 91.42 6.45 × 1010

3.0 87.66 2.07 × 1010

ge cake, and specific resistance to filtration, respectively.
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for three times, the acidified sludge could serve as inocula for
sludge bioleaching, of which the Thiobacillus activity was
strongly strengthened (Zhang et al., 2009). The whole period
of inocula preparation was about 10 days as shown in Fig. 1.
During this process, the loss of evaporated water was
compensated by adding distilled water.

1.3. Sludge bioleaching and Fenton oxidation

The inocula of 15 mL were added into a 250 mL Erlenmeyer
flask filled with 135 mL raw sludge, and the flask was agitated
in an orbital shaker at a shaking speed of 180 r/min for
bioleaching. During bioleaching process, the loss of evaporat-
ed water was compensated by adding distilled water. After
finishing bioleaching process, different dosages of H2O2 and
Fe2+ were added into 150 mL bioleached sludge. Subsequently,
the sludge was rapidly mixed at 200 r/min for 5 min, followed
by slowly stirring at 50 r/min for a certain time. The pH of the
traditional Fenton oxidation was adjusted by sulfuric acid.

1.4. Analytical procedures

The SRF was determined using Buchner funnel method.
100 mL sludge was poured into a Buchner funnel (Zhengzhou
Zhongtian Chemical Instrument Co., Ltd., Zhengzhou, China)
to filter at a vacuum pressure of 0.03 MPa. The SRF is
calculated in accordance with Eq. (1) (Buyukkamaci, 2004; Lu
et al., 2003):

SRF ¼ 2bA2P
μC

ð1Þ

where, SRF (s2/g) is the specific resistance to filtration, P (g/cm)
is the filtration pressure, A (cm2) is the filter area, μ (g/(cm·s))
is the viscosity of filtrate, b (s/cm) is the slope of filtrate
discharge curve, and C (g/cm) is the weight of cake solids per
unit volume of filtrate.

Sludge cakes produced by centrifugal process at 6000 r/min
for 5 min in a batch laboratory centrifuge (LDZ4, Changzhou
Wanhe Instrument Manufacture Co., Ltd., Changzhou, China)
were dried in an oven at 105°C to determine the moisture.
Sludge settleability was determined by recording the super-
natant volume of 100 mL sludge after gravity settling for
30 min. The viscosity of filtrate was determined by a rotary
viscometer (NDJ-1, Shanghai Pingxuan Scientific Instrument
Co., Ltd., Shanghai, China).
c.a
c.c

n
Fig. 2 – Effect of H2O2 dosage on sludge dewatering.
Experimental condition: pH = 2.20 ± 0.1, reaction
time = 60 min, Fe2+ dosage = 0.036 mol/L.
2. Results and discussion

2.1. Sludge bioleaching

Sulfur powder always has a low utilization rate during
bioleaching process (Ravishankar et al., 1994) and the rest sulfur
would cause the “later acidification” effect (Chen et al., 2003).
Thus, a relatively low dosage of 0.09 mol/L was adopted as
energy substance in this study, which was reported to be
enough for sludge bioleaching (Chen et al., 2004). As shown in
Fig. 1, it took 2 days to drop the pHbelow2.5. Someproperties of
bioleached sludge are given in Table 1. Compared with raw
sludge, the dewaterabilty was improved by the bioleaching. The
SRFdeclined from6.45 × 1010 to 2.07 × 1010 s2/gwitha reduction
of 70%, andMSC decreased by 3.76%. Besides, the VS reduced by
7.8% after sludge bioleaching, which may be contributed from
the metabolism of acidophilic Thiobacillus and the acidic
circumstance developed in the sludge (Pathak et al., 2009).

2.2. Fenton oxidation

It has been reported that sewage sludge treated by bioleaching
with a pH below 2 is more difficult to be dewatered than that
with a higher pH (Xiao et al., 2010). This problem could be
overcome by keeping the sludge pH between 2 and 3 (Pathak
et al., 2009). In addition, it was reported that the optimal pH of
Fenton reaction for sewage sludge condition was around 2.5
(Lu et al., 2001; Neyens and Baeyens, 2003). Therefore, it was
considered that the bioleaching process was finished in this
study when the sludge pH dropped to about 2.5.

2.2.1. Effects of H2O2 and Fe2+ dosages
The Fenton process causes the formation of highly reactive
hydroxyl radicals (OH·) that attack and destroy organic
matters (Neyens et al., 2004), and the amount of H2O2 directly
influences the production of OHU which plays an important
role in sludge dewatering (Lu et al., 2003). As shown in
Fig. 2, the lower SRF and MSC indicated the higher sludge
dewaterability. At the beginning, the SRF decreased obviously
with the increase in H2O2 dosage, but later there was no
significant change. The minimum SRF and MSC were both
achieved at the H2O2 dosage of 0.24 mol/L, with a value of
2.97 × 108 s2/g and 78.58%, respectively. In China, sewage
sludge with a SRF lower than 4.0 × 108 s2/g is recommended
as easy-dewatering sludge by Ministry of Environmental
Protection of China (2006). Thus, the sludge became easy to
be dewatered at the H2O2 dosage of 0.12 mol/L. The SRF and
moisture of sludge cake were 3.56 × 108 s2/g and 79.68%,
respectively. Although the sludge dewaterability was im-
proved by increasing the amount of H2O2, from an economical
point of view, the suitable H2O2 dosage was 0.12 mol/L.

With a H2O2/Fe2+ (mol/mol) ratio of 3.3 obtained in Fig. 2,
the effect of different dosages of H2O2 and Fe2+ on sludge
jes
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Fig. 3 – Effect of H2O2 and Fe2+ dosages on sludge dewatering
with a H2O2/Fe2+ (mol/mol) ratio of 3.3. Experimental
condition: pH = 2.25 ± 0.1, reaction time = 60 min.

a

b

c

Fig. 5 – Supernatant volume change of sludge treated by
bioleaching-Fenton oxidation. Experimental conditions of
a, b, and c are the same as Figs. 2, 3, and 4, respectively.
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dewaterability was investigated. As illustrated in Fig. 3, the
SRF and MSC both decreased with the increase in the dosage
of Fe2+. Thus, sludge dewaterability was improved by increas-
ing the dosages of H2O2 and Fe2+ with a H2O2/Fe2+ (mol/mol)
ratio of 3.3. The larger the H2O2 and Fe2+ dosage, the higher
the sludge dewaterability. But comparing the SRF from an
economical point of view, the appropriate dosages of H2O2

and Fe2+ were 0.12 and 0.036 mol/L, respectively. Under this
condition, sludge became easy to be dewatered.

2.2.2. Effects of reaction time
The influence of reaction time on the dewaterability of
bioleached sludge is shown in Fig. 4. The results indicated
that the sludge dewaterability was greatly improved at the
beginning of the reaction, and later there were no significant
change of the SRF and MSC. At 60 min, the SRF and MSC were
3.43 × 108 s2/g and 79.58%, respectively, which indicated that
sludge was easy to be dewatered. Thus, the optimal reaction
time was selected to be 60 min.

2.3. Sludge settleability

In this study, supernatant volume after gravity settling for
30 min was selected to characterize the sludge settleability
c.c
n

Fig. 4 – Effect of reaction time on sludge dewatering.
Experimental condition: pH = 2.30 ± 0.1, Fe2+

dosage = 0.036 mol/L, H2O2 dosage = 0.12 mol/L.
 c.a

after treatment. Fig. 5 shows the settleability of sludge treated
by bioleaching-Fenton oxidation. The sludge settleability was
enhanced with the increase of H2O2 dosage shown in Fig. 5a.
With a H2O2/Fe2+ (mol/mol) ratio of 3.3, the settleability was
improved by increasing the dosages of H2O2 and Fe2+ depicted
in Fig. 5b. As illustrated in Fig. 5c, the settleability of sludge
was improved rapidly at the beginning of the Fenton reaction,
and the supernatant volume reached the maximum volume
at 60 min, and later the supernatant volume appeared in a
decreasing trend, which may be due to the particle size
reduction along with the reaction time. Through the
bioleaching-Fenton oxidation, sludge settleability was signif-
icantly improved.

2.4. Comparison for Fenton and bioleaching-Fenton oxidation

The effect of Fenton oxidation and bioleaching-Fenton oxida-
tion on sludge dewatering was investigated. Some properties
of experimental sludge treated respectively by Fenton (pH
adjusted by sulfuric acid) and bioleaching-Fenton oxidation
are given in Table 2. The dewaterability of sludge treated by
jes
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Table 2 – Properties of experimental sludge treated by Fenton oxidation and bioleaching-Fenton oxidation.

Treatment method pH VS reduction
(%)

Supernatant volume
(mL)

MSC
(%)

SRF
(s2/g)

Fenton oxidation 2.24 18.68 15.0 83.24 4.26 × 109

Bioleaching-Fenton oxidation 2.18 36.93 41.0 79.85 3.75 × 108

Reaction time = 60 min, Fe2+ dosage = 0.036 mol/L, H2O2 dosage = 0.12 mol/L; the sludge pH was adjusted by sulfuric acid for Fenton oxidation.
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bioleaching-Fenton oxidation (SRF of 3.75 × 108 s2/g) was
much higher than that of sludge treated by Fenton oxidation
(SRF of 4.26 × 109 s2/g). It was reported that VS reduction of
sewage sludge was an indication of the stabilization (Pathak
et al., 2009), the higher the VS reduction, the better the sludge
stability. Thus, the sludge treated by bioleaching-Fenton
oxidation had a better stability with a VS reduction almost
twice as much as that of sludge treated by Fenton oxidation.
Besides, the settleability of sludge treated by bioleaching-
Fenton oxidation was much better. Therefore, the bioleaching-
Fenton oxidation was more efficient than the Fenton oxidation
for sludge dewatering, which might result from the bioleaching
pretreatment assimilating the sludge and providing a better
reaction condition for Fenton oxidation.

2.5. Possible mechanisms of dewaterability

The VS is a sum parameter for the content of organic matters
in sludge (Mundhenke et al., 2001). The relationship between
the dewaterability and VS reduction is shown in Fig. 6. The
SRF and MSC decreased with the increase in VS reduction, the
higher the VS reduction, the better the sludge dewaterability.
Neyens and Baeyens (2003) considered that the difficulty in
sludge dewatering mainly resulted from the presence of EPS,
which accounts for up to 80%of the total sludgemass (Frolund et
al., 1996). The VS reduction was up to 36.93% under the optimal
conditions of bioleaching-Fenton oxidation, which meant that
the EPS might be effectively degraded. The EPS degradation
reduces its water retention property thereby releasing the
EPS-bound water and improving sludge dewatering (Neyens et
al., 2004). Additionally, the microbial cells would be more easily
Fig. 6 – Relationship between sludge dewaterability and VS
reduction during bioleaching-Fenton oxidation process.
Experimental condition: pH = 2.25 ± 0.1, reaction
time = 60 min, H2O2/Fe2+ (mol/mol) ratio = 3.3.
destructed through the bioleaching-Fenton oxidation due to
microbial cells losing protection provided by the EPS (Houghton
et al., 2001), and thedestruction ofmicrobial cells couldmake the
intercellular water release and improve the sludge dewatering
(Lu et al., 2003).

Under the low pH condition created by sludge bioleaching,
the flocculation of sludge would be improved, because the
electrostatic repulsive interactions are minimized at low
pH so that the dissociation constants of sludge flocs are
minimum (Neyens et al., 2004). The similar reports about sludge
dewatering by bioleaching were represented in the previous
studies (Pathak et al., 2009; Xiao et al., 2010). In addition, the
ferric/ferrous ions were effective flocculants in sludge condi-
tioning (Oikonomidis et al., 2010). As shown in Fig. 3, the SRF
declined by increasing the Fe2+ dosage. The resultswere in good
agreement with that obtained by Lu et al. (2003).

Therefore, themainmechanisms of sludge conditioning by
bioleaching-Fenton oxidation might include the release of
EPS-bound water and intercellular water resulting from the
degradation of the organic matters and destructions of
microbial cells, and the flocculation effect contributed from
the low pH circumstance and ferrous/ferric ions. However, the
more detailed mechanisms need to be further explored.
3. Conclusions

The dewaterability of sewage sludge treated by bioleaching-
Fenton oxidation was investigated in this study. The results
showed that the sludge bioleaching created a suitable condition
for Fenton reaction, and the dewaterability of sludge was
significantly improved by bioleaching-Fenton reagent. From an
economical point of view, the optimal dosages of H2O2 and Fe2+

were respectively accepted as 0.12 and 0.036 mol/L, and the
optimum reaction time was 60 min. Under optimal conditions,
SRF, VS reduction, and MSC were 3.43 × 108 s2/g, 36.93%, and
79.58%, respectively. Additionally, the bioleaching-Fenton oxida-
tion was superior in sludge dewatering than Fenton oxidation.
The bioleaching-Fenton oxidation not only significantly im-
proved the sludge dewaterabilty, but also efficiently enhanced
the sludge stability. The improvement of sludge dewaterability
might mainly result from the release of EPS–bound water and
intercellular water, and the flocculation effect.
c.c
n
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