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Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products
were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room
temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide
(MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel
foam, were used as catalysts. It was found that introducing catalysts could improve toluene
removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In
addition,NOxwas suppressedwith thedecreaseof specific energy density (SED) and the increase
of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four
kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The
MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but
the highest concentration of NOx. A possible pathway for NOx production in DBD was
discussed. The contributions of oxygen active species and hydroxyl radicals are dominant
in NOx suppression.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Emission of volatile organic compounds (VOCs) from various industrial
processes is one of the most important sources of air pollution. VOCs are
detrimental to both humanhealth and the environment, either directly from their
toxicity andmalodorous nature or indirectly as ozone and smog precursors (Chen
et al., 2009). Toluene, as one of the typical VOCs, is usually chosen as a probe
contaminant for treatment because it is difficult to dealwithdue to thepresenceof
a benzene ring and because it causes respiratory disorders and even carcinogenic
and mutagenic effects. It also represents one of the most commonly detected
VOCs in many industries, such as those producing lacquers, adhesives, and
rubber, as well as in some printing and leather tanning processes (Angel et al.,
2008).
otmail.com (Yufang Guo)

o-Environmental Science
Dielectric barrier discharge (DBD) has offered an innovative technology for
removing toluene from waste gas characterized by low toluene concentration
and high flow rate (Atten et al., 1987; Clements et al., 1989; Yamamoto et al.,
1996; Snyder and Anderson, 1998; Pietsch, 2001; Kim et al., 2008; Mista and
Kacprzyk, 2008). DBD, which contains at least one dielectric barrier, distributes
microdischarges throughout the discharge area. It initiates chemical reactions
by electron impact dissociation of organic molecules and ionization of the
carrier gas (Magureanuet al., 2007). DBDproduces a plasma region characterized
by significant non-thermal properties. Electric energy is primarily used
for the production of high energy electrons, leaving the bulk of gas at room
temperature. The potential for energy-saving is a main advantage of DBD
technology.

However, DBD alone usually cannot convert pollutants to ideal products.
The main problem for VOC removal in a DBD system is the formation of toxic
byproducts, such as CO, O3, and NOx (Magureanu et al., 2007; Van Durme et
jes
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al., 2008; Delagrange et al., 2006; Bo et al., 2009; Kalra et al., 2005). These would
cause secondary pollution if not subjected to further treatment. Sometimes
they are even more harmful than the original VOCs. Notable improvements
in inhibition of their formation can be achieved through the plasma-catalysis
process, which introduces a catalyst into the discharge zone. Metal oxides
have been widely used as active components in the removal of organic
compounds (Das and Parida, 2007; Guo et al., 2007; Sano et al., 2006;
Karuppiah et al., 2012; Lahousse et al., 1998).

The byproduct NOx can affect reaction rate and even lead to deactivation
of a catalyst. Van Durme reported that the deactivation of catalyst materials
may be explained by the formation of HNO3 in the plasma discharge (Van
Durme et al., 2008). Subrahmanyam also found that NOx could form nitrate,
which may cause the deactivation of catalysts (Subrahmanyam et al., 2006).
In this study, the formation characteristics of NOx during toluene removal
were investigated in a DBD-catalyst system at room temperature and
atmospheric pressure. Four kinds ofmetal oxide catalysts, that is, manganese
oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO),
supported on Al2O3/nickel foams, were placed in the discharge area of the
reactor. Experimental tests were conducted to determine the effect of the
catalysts on toluene oxidation. In addition, exhaust gas was experimentally
simulated to determine the influences of humidity, gas flow rate and toluene
concentration as well as catalysts on NOx formation.
1. Experimental

1.1. Experimental set-up

A schematic diagram of the experimental system is shown in
Fig. 1. The apparatusmainly included a gas supply and regulation
system, a DBD reactor with a power supply system and a gas
analysis system. The initial toluene concentration ranged from
200 to 800 mg/m3. Gaseous toluene was obtained by controlling
the air flow rate from a gas cylinder through pure toluene liquid
(>99.5%) which was kept in a water bath (T = 25 ± 1°C). After
passing through a mixing chamber, the feed gas entered the
DBD reactor. Gas flow rate was controlled to between 150 and
450 mL/min.

Toluene and other volatile organic compoundswere analyzed
by a gas chromatograph (GC-7890II, Tianmei, China) equipped
with a hydrogen flame ionization detector (FID) and a DB-5MS
capillary column (30 m × 0.25 mm × 0.25 mm) heated at 80°C.
Humidity was measured by a humidity meter (Center 310,
1 2

3

4 5 6

Fig. 1 – Schematic diagramof the experiment. (1) dry air cylinder, (2
(4) bubbling for toluene preparation, (5) water bath for toluene gene
(10) resistance, (11) oscilloscope, (12) gas chromatogram, (13) ozon
Shuangxu, Shanghai, China). The concentrations of CO and
CO2 were measured by a CO analyzer (TX2000, Oldham,
France) and a CO2 detector (GXH-3010E, Huayun, Beijing,
China), respectively. The concentration of ozone was moni-
tored by an ozone analyzer (DCS-1, Lida, Shanghai, China).
NOx was detected with a NO analyzer (PGM-1140, Rae, USA)
and a NO2 analyzer (PGM-1150, Rae, USA).

1.2. DBD reactor and power supply system

A wire-plate DBD reactor was used in the reaction (Fig. 2). Two
epoxy resin boards (200 mm × 45 mm × 0.8 mm) were used to
form reactor walls and acted as dielectric barriers (the dielectric
constant ε = 3.6). The high voltage electrode was made of brass
wire (diameter 0.6 mm). The brass wire electrode was shaped
into a spiral in order to increase energy density in the reaction
volume. The wire-to-wire distance was 8 mm. Two grounded
copper nets were fixed on the two sides of the middle epoxy
resin board. The total length of the reactor was 200 mm, while
the effective length was 150 mm. When no catalyst was used,
the gap between the high-voltage electrode and the grounded
electrode was 8 mm, resulting in a cross sectional area of
400 mm2 and a reaction volume of 60 cm3 for the flow channel.
To add an in-situ catalyst, it was supported by two pieces of
nickel foam (150 mm × 25 mm × 2 mm) fixed on the grounded
electrodes. This produced a gap of 6 mm, a cross-sectional area
for the flow channel of 300 mm2, a reaction volume of 45 cm3

and a catalyst volume of 15,000 mm3.
High voltage power was supplied by a booster (0–250 V)

combined with a high voltage AC transformer (CTP-2000K,
Suman, Nanjing, China) in series. In this experiment the
frequency was controlled at 9.512 KHz. The applied voltage
and current were measured by a high voltage probe (P6015,
Tektronix, USA) and adigitizing oscilloscope (TDS1002, Tektronix,
USA). The input power can be detected by the high voltage AC
transformer directly. The discharge power (the power deposi-
ted to the reactor) was calculated from the applied voltage
and the reactor current.
jes
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Fig. 2 – Structure of the DBD reactor with catalyst. (1) high voltage electrode, (2) polyethylene tube (gas out), (3) brass wire, (4)
epoxy resin board (1 mm), (5) nickel foam, (6) copper net, (7) silicone pad, (8) ground electrode, (9) polyethylene tube (gas in), (10)
epoxy resin board (2 mm), (11) drilled hole for a screw.
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1.3. Catalyst

Four kinds of catalysts, i.e.MnOx, FeOx, CoOx and CuO supported
onAl2O3/nickel foam,werepreparedbyan impregnationmethod.
The detailed process can be obtained in a previous article (Guo et
al., 2006).

Toluene removal efficiency (η), specific energy density
(SED, J/L), carbon dioxide selectivity SCO2

and energy efficiency
(ηE, g/kWh) were calculated as follows:

η ¼ toluene½ �in− toluene½ �out
toluene½ �in

� 100 ð1Þ

SED ¼ discharge power wð Þ
gas flow rate L=minð Þ � 60 ð2Þ

SCO2 %ð Þ ¼ CO2½ �
CO2½ � þ CO½ � ð3Þ

ηE ¼ toluene½ �removal g=m3
� �� gas flow rate m3=hr

� �

input power kWð Þ : ð4Þ

2. Results and discussion
c.c
n

2.1. Toluene removal performance with/without catalyst

2.1.1. Energy yield
The relationship between SED (J/L) and ηE (g/kWh) with/without
catalyst presented in Fig. 3a indicates that SED ismoredependent
on EY in a DBD system than in a DBD-catalyst system. For
example, the EY value was 0.21–1.12 g/kWh in the DBD system
compared to 1.24–1.37 g/kWh in the DBD-FeOx catalyst system
(SED: 140–320 J/L).

2.1.2. Toluene removal efficiency
The catalytic properties of various metal oxides for toluene
oxidation were studied (Fig. 3b). It was found that catalysts
promoted toluene decomposition significantly. The following
toluene removal efficiency order was found: FeOx catalyst >
MnOx catalyst > CuO catalyst > CoOx catalyst > no catalyst. The
conversion was only 7.1% without catalyst compared with 45%
with the FeOx catalyst (SED: 140 J/L).
 c.a

2.1.3. Ozone formation
The production of ozone with/without catalyst is indicated
in Fig. 3c. It can be seen that metal oxides promoted ozone
decomposition. The concentration of O3 was 34.6 mg/m3with
the MnOx catalyst, compared to 420 mg/m3 without catalyst
at 320 J/L. By comparing the results presented in Fig. 3c, it can be
concluded that the ozone concentration varied in the following
order: MnOx catalyst < FeOx catalyst < CoOx catalyst < CuO
catalyst < no catalyst. MnOx catalyst exhibited the best perfor-
mance in terms of O3 decomposition.

Plasma generates intermediate species having a sufficiently
long lifetime to trigger surface reactions on a catalyst placed in
the plasma reactor (Hammer et al., 2004). It is clear that most
ozone is decomposed catalytically, formingmolecular and highly
active atomic oxygen (Guo et al., 2007; Magureanu et al., 2005;
Delagrange et al., 2006). Delagrange reported amechanism for O3

decompositionwith aMnO2 catalyst as follows (Delagrange et al.,
2006):

O3 →MnO2 Oð3PÞþ1ΔO2

O3 →MnO2 Oð1DÞþ3
X

O2:

ð5Þ

2.1.4. Selectivity of CO2

The selectivity of CO2 decreased with increasing SED (Fig. 3d).
The selectivity of CO2 decreased from 80.56% to 48.84% when
SED increased from 140 to 320 J/L without catalyst. The result
was the same as in previous reports (Guo et al., 2006, 2010).
But this trend was different than that reported in some
papers (Magureanu et al., 2007; Karuppiah et al., 2012).
Maybe differences in catalyst oxidation ability cause this
discrepancy.

Fig. 3d also shows that CO2 selectivity can be greatly
enhanced by introducing catalysts. The CO2 selectivity without
catalystwas only 48.84%but it increased to 74.62%with theMnOx
catalyst (SED: 320 J/L). Oxygen active species are formed in the
decomposition of O3 on a catalyst surface. Carbon monoxide
and toluene (or intermediate reaction products) are oxidized by
oxygen active species to CO2, which eventually lead to a higher
CO2 selectivity (Chavadej et al., 2007).

The MnOx catalyst exhibited the highest CO2 selectivity
(Fig. 3d) and lowest ozone concentration (Fig. 3c), which
jes
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Fig. 3 – Effect of SED on energy yield with different catalysts (a), and effects of different catalysts on toluene removal efficiency (b), O3
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proved that active species produced from O3 decomposition
oxidized CO into CO2. This is in accord with Sano's result, which
concluded that a catalystwith a higher O3 decomposition activity
was related to a catalystwith ahigher COoxidation activity (Sano
et al., 2006).

2.2. NOx performance under different conditions

2.2.1. Specific energy density effect
The production of the main NOx species (NO, NO2) as a function
of SED is shown in Fig. 4. The concentration of NO and NO2 both
increasedwith increasing SED. For example, the concentration of
NO increased from 2.3 to 7.9 mg/m3, and for NO2 it was 19.56–
33.23 mg/m3 with SED ranging from 140 to 320 J/L. This trend is
consistent with the result by Cooray and Rahman (2005). The
concentration of NO was much lower than that of NO2. The
concentration of NO2 was 33.2 mg/m3 but for NO it was only
7.9 mg/m3 (SED: 320 J/L). Some active molecules and radicals
such as O3, OH and O produced in the discharge are effective in
the oxidization of NO to NO2, which results in less NO in the
effluent.

2.2.2. Humidity effect
Since practical oxidation of VOCs in air usually occurs in the
presence of water vapor, the effect of humidity on the formation
of NOx was investigated as shown in Fig. 5a. The results
suggested that the addition of water vapor caused a remarkable
suppression of NOx. Close to 65.0 mg/m3 of NO2 was detected
under dry conditions at SED of 320 J/L, whereas, it decreased to
30.1 mg/m3 (relative humidity/RH: 20%) and 28.0 mg/m3 (RH:
40%). This is in agreement with the report of Van Durme et al.
(2007).
jes
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2.2.3. Effect of gas flow rate
Gas flow rate had a significant effect on NOx generation (Fig. 5b).
When flow increased from 150 to 450 mL/min, the concentration
of NO2 decreased from 51.7 down to 33.23 mg/m3 and NO
decreased from 15.8 to 7.9 mg/m3 (SED: 320 J/L). The increase of
gas flowratedecreases the concentrationof discharging electrons
and the probability of collision rate with electrons. Therefore
fewer N and O atoms are generated and NOx is depressed.

2.2.4. Effect of initial toluene concentration
Fig. 5c shows the concentration of NOx under different initial
toluene concentrations. A better performance in suppressing
NOx was identified when the toluene concentration was higher.
NO2 concentration decreased from 48.88 to 19.39 mg/m3with the
increase of toluene concentration from 200 to 800 mg/m3 (SED:
320 J/L).

More chemical species compete for radicals generated by a
fixed amount of plasma energy under a higher toluene
concentration. The detailed reactions were discussed by Guo
et al. (2006). Moreover, detection of polymers containing N in
the effluent supports the idea that N2 can be broken, and
radicals that are dissociated from toluene would compete for
energy with N2 (Subrahmanyam et al., 2006; Bo et al., 2007).
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Fig. 5 – Effect of background humidity (a), gas flow rate (b), toluen
Gas flow rate: 450 mL/min, initial concentration of toluene: 400 m
2.2.5. Effect of different catalysts
Catalysts had a positive effect on the suppression of NOx
(Fig. 5d). The NO2 concentration was 33.23 mg/m3 without
catalyst, but it decreased to 16.6 mg/m3 with the CuO catalyst
(SED: 320 J/L). And, the NO concentration without catalyst was
nearly five times higher than that with the CuO catalyst. The
concentration of NOx follows the trend: CuO catalyst < CoOx
catalyst < FeOx catalyst < MnOx catalyst < no catalyst. The CuO
catalyst shows excellent performance in the suppression of NOx.
However, from the results of Fig. 3b, c, d, the CuO catalyst
showed a weaker catalytic ability, for example lower toluene
decomposition, the highest O3 concentration and lowest CO2

selectivity. But actually when we choose a catalyst, catalytic
ability is the most important factor. This result in Fig. 5d could
give some suggestions for NOx suppression.

The MnOx catalyst had the best ability in decomposing O3,
but the concentration of NOx was the highest among the four
kinds of catalysts. According to formula (5), with the MnOx
catalyst most O3 is decomposed to O2 and O atoms, which
may combinewith N atoms and generatemore NOx compared
with other catalysts. On the other hand, these O atoms also
are consumed in the decomposition of toluene. With catalyst,
toluene removal efficiency is higher than without catalyst. The
jes
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competing reaction of O atoms with toluene causes a decrease
in the NOx concentration.

Metal oxides have been reported to be highly effective for
NOx removal in combination with non-thermal plasma (Rappé
et al., 2004; Sun et al., 2005). This can be explained as follows.
First, microdischarges are generated inside the catalyst pores,
resulting in more discharge per volume and energy density of
the discharge (Hensel et al., 2005; Holzer et al., 2005). Catalysts
may induce a shift in the distribution of accelerated electrons
(Van Durme et al., 2008). Then, partially oxidized hydrocarbons
and peroxy radicals (RO2) are generated, which react with NO
and strongly influence NO2 formation rates (Rappé et al., 2004).
In addition, NO2 reacts over the catalyst while partially oxidized
hydrocarbons are consumed during selective catalytic reduction,
producing CO2, N2 and H2O. On the other side, adsorption is
another reason for the lower amount of NOx detected with
catalysts (Kwak et al., 2006).

2.3. Possible formation pathways of NOx

2.3.1. Nitrogen atom reaction pathway
Since in this study no nitrogen was contained in the pollutant, it
could be assumed that NOx came from the air that was used as
carrier gas. Electrons, ions, excitedmolecules and free radicals are
formedduring theDBDprocess.When fast electronsare absorbed
in the carrier gas, they cause ionization and excitation of N2,
O2 and H2O in the carrier gas. Primary species and secondary
electrons are formed. The G-values (molecules/100 eV) of the
primary species are simplified as follows (Mätzing, 1989).

4:43N2→0:29N2
� þ 0:855N 2D

� �þ 0:295N 2P
� �þ 1:87Nþ 2:27Nþ

2 þ 0:69Nþ þ 2:96e

ð6Þ

5:377O2→0:077O�
2 þ 2:25O 1D

� �þ 2:8Oþ 0:18 O�ð Þ þ 2:07Oþ
2 þ 1:23Oþ þ 3:3e ð7Þ

7:33H2O→0:51H2 þ 0:46O 3P
� �þ 4:25OHþ 4:15Hþ 1:99H2Oþ þ 0:01Hþ

2

þ0:57OHþ þ 0:67Hþ þ 0:06Oþ þ 3:3e

ð8Þ

N(2D) and N(2P) as the first two electronically excited states
of atomic nitrogen react with O2 and H2O, then NO is formed
(Herron, 1999).

N 2D
� �þ O2→NOþ O 3P;1D

� �
k ¼ 5:2� 10−12cm3= mol � secð Þ 298Kð Þ

ð9Þ

N 2D
� �þH2O→H2 þ NO k ¼ 4:2 � 10−11cm3= mol � secð Þ 298Kð Þ

ð10Þ

N 2P
� �þ O2→Oþ NO k ¼ 2:5 � 10−12cm3= mol � secð Þ 298Kð Þ

ð11Þ

2.3.2. Oxygen atom reaction pathway
NOx reactions involving O atom are as follows:

Oþ NO→NO2 k ¼ 3:0� 10−11 ð12Þ

Oþ NO2→NO3 k ¼ 2:2� 10−11 ð13Þ

Oþ NO2→O2 þ NOk ¼ 9:7� 10−12 ð14Þ
OþNO3→O2 þNO2k ¼ 1:7� 10−11: ð15Þ

The rate constants are taken from the literature (Atkinson et
al., 1992, 1997). The units of the reactions are: sec−1, cm3/(mol·sec)
and cm3/(mol·sec) for first-, second- and third-order reactions,
respectively. Kim indicated that the increase of oxygen partial
pressure can reduce the formation of nitrogen oxide (Kim et al.,
2008).

2.3.3. OH radical reaction pathway
Water mainly came from the oxidation of toluene with air and
the water contained in the background gas.

C7H8 þ 9O2→7CO2 COð Þ þ 4H2O ð16Þ

Fast electrons from the electron beam ionize H2O and
produce OH radical (Chae, 2003).

eþH2O→eþ Oþ OH� ð17Þ

eþ O2→eþ O 3P
� �þ O 1D

� � ð18Þ

O 1D
� �þH2O→OH � þOH� ð19Þ

OH radicals react with NO and NO2 to form HNO2 and
HNO3. The reactions are as follows (Chmielewski et al., 2002):

OH � þNO→HNO2 k ¼ 3:2� 10−11 ð20Þ

OH � þNO2→HNO3 k ¼ 6:0� 10−11 ð21Þ

OH � þNO3→HO2 þNO2 k ¼ 2:3� 10−11 ð22Þ

OH � þHNO2→H2OþNO2 k ¼ 4:9� 10−12 ð23Þ

OH � þHNO3→H2OþNO3 k ¼ 1:5� 10−13: ð24Þ

Reactions (20) and (21) are critical for NOx removal. The
results shown in Fig. 5a demonstrate the suppression of NOx
with the addition of water.

2.3.4. O3 reaction pathway
O3, which is formed from the reaction of O2 and O atoms, is
involved in the NOx reduction reaction as follows (Chmielewski
et al., 2002):

O3 þNO→NO2 þ O2 k ¼ 1:8� 10−14 ð25Þ

O3 þNO2→NO3 þ O2 k ¼ 3:2� 10−17: ð26Þ

Comparing the rate constant from reactions (12)-(15), (20)–(26),
it can be seen that O atoms and OH radicals play a more
important role than that of O3 in this process.
c.a
3. Conclusions

(1) The concentration of NO2 wasmuch higher than that of NO
since NO could be oxidized to NO2 easily in a DBD reactor. (2)
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Catalysts can suppress NOx production due to the fact that
catalysts could affect some characteristics of the DBD and
adsorb NOx. Long-lived species are useful to further decompose
toluene on the surface of the catalyst. Among the four kinds
of catalysts, the CuO catalyst showed the best performance
in NOx suppression. (3) Oxygen active species and hydroxyl
radicals are more important than ozone in suppressing
NOx.
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