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An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm
optimization algorithm to solve the parameter optimization problem. In addition, each item
in the first-order accumulated generating sequence was set in turn as an initial condition to
determine which alternative would yield the highest forecasting accuracy. To test the
forecasting performance, the optimized models with different initial conditions were then
used to simulate dissolved oxygen concentrations in the Guanting reservoir inlet and outlet
(China). The empirical results show that the optimized model can remarkably improve
forecasting accuracy, and the particle swarm optimization technique is a good tool to solve
parameter optimization problems. What's more, the optimized model with an initial
condition that performs well in in-sample simulation may not do as well as in
out-of-sample forecasting.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Surface water quality is a hot environmental issue because of its
importance in human health and ecological systems (Voyslavov
et al., 2012; Chen et al., 2014; Tanaka et al., 2013). Dissolved oxygen
(DO) is one of the most important water quality parameters, and
forecasting DO in surface water is a big concern for water resource
management. Many models have been developed to forecast DO
in water bodies (Heddam, 2014; Matos and de Sousa, 1996; Liu et
al., 2014; Singh et al., 2014). Neural network, a widely usedmethod
in DO forecasting, can obtain high simulation and forecasting
accuracy (Wen et al., 2013; Areerachakul et al., 2013; Ranković et
al., 2010; Heddam, 2014). However, the application of the neural
network method typically requires large amounts of input data.
Grey system theory, proposed by Deng (1982), was specially
designed to study systems with incomplete or uncertain infor-
mation. Limited data are available to estimate the behavior of an
unknown system, making grey models useful for systems with
scarce information. GM (1,1) constructed by exponential functions
is one of the most widely used grey models (Lee et al., 2007; Jiang,
1995). GM (1,1) only requires four data values to forecast the
parameters of a system with a reasonable degree of accuracy.
buaa.edu.cn (Zhihong Zo
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Many methods have been used to improve the accuracy of the
traditional grey forecasting model GM (1,1) to some extent (Li et
al., 2011; Hsu and Chen, 2003).

In this article, the nonlinear grey Bernoulli model (NGBM (1,1))
proposed by Chen (2008) and Chen et al. (2008) is tested for its
effectiveness. NGBM (1,1) is a simple modification of GM (1,1)
using the Bernoulli differential equation. Unlike GM (1,1) and the
grey Verhulst model (GVM), relying on a constant number such as
0 and 2, NGBM (1,1) possesses a power exponent r to determine
the shape of model's curve. When r is equal to 0, NGBM (1,1)
degenerates to GM (1,1), while when r is equivalent to 2, NGBM
(1,1) becomes GVM. This demonstrates that NGBM (1,1) has
greater flexibility than GM (1,1) and GVM through adjustment of
the parameter r. Besides the parameter r, the production
coefficient of the background value p is another parameter that
needs to be improved. The value p in grey models is determined
by the developing coefficient a (Luo et al., 2003; Zhou et al., 2009).
Thus, it is inaccurate to customarily set the value p to 0.5. The
values r and p in NGBM (1,1) have been successfully improved to
enhance the modeling precision (Chen, 2008; Hsu, 2010; Pao et al.,
2012; Zhou et al., 2009; Chen et al., 2010; Wang et al., 2011; Zhang
et al., 2014). First, a simple computer program (Chen, 2008), a
jes
c.a

c.c
nu).

s, Chinese Academy of Sciences. Published by Elsevier B.V.

http://www.jesc.ac.cn


159J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 2 9 ( 2 0 1 5 ) 1 5 8 – 1 6 4
genetic algorithm (Hsu, 2010), and a numerical iterative method
(Pao et al., 2012) were used to determine the value rwith the value
p as 0.5, and the forecasting ability of the proposed models was
clearly improved. Then, particle swarm optimization (PSO) (Zhou
et al., 2009), the Nash equilibrium concept (Chen et al., 2010;
Zhang et al., 2014), and LINGO (an Operational Research software)
(Wang et al., 2011) were utilized to simultaneously determine the
values r and p, and the optimized model further improved the
forecasting precision. In this study, according to its ability in
optimizing difficult multidimensional discontinuous problems,
PSO was chosen to solve the parameter optimization problem.

Most improvements of NGBM (1,1) have focused on the values
r and p. However, studies on both the initial condition and the
two adjustable parameters in the NGBM (1,1) model are scarce
(Wang, 2013a). The initial condition in grey models is also an
important factor affecting the simulation and forecasting preci-
sion. According to grey system theory, the model should give
priority to new information. Thus, the initial condition should
not be limited to the first item in the first-order accumulated
generating sequence, and the last itemwas taken to be the initial
condition (Dang et al., 2005). Wang et al. (2010) used the weighted
sum of the first item and the last item as the initial condition. Xu
and Leng (1999) and Liu et al. (2003) minimized the sum of the
square error between the simulated values and the observed
values, and between the simulated accumulating generation
values and the original accumulating generation values, respec-
tively. In this study, different initial conditions (Zhang et al., 2002)
combined with the optimized model were tested to research the
effectiveness of the NGBM (1,1) model.
c.c
n

1. Methodology

1.1. Nonlinear grey Bernoulli model

The procedures of NGBM (1,1) can be concluded as follows.

Step 1: Let X(0) be a non-negative data sequence

X 0ð Þ ¼ x 0ð Þ 1ð Þ; x 0ð Þ 2ð Þ; x 0ð Þ 3ð Þ; ⋯; x 0ð Þ nð Þ
h i

; ð1Þ

where, x(0)(k) is the kth value of X(0), k = 1, 2, …, n.
Step 2: Perform the accumulated generating operation on X(0)

as:

X 1ð Þ ¼ x 1ð Þ 1ð Þ; x 1ð Þ 2ð Þ; x 1ð Þ 3ð Þ; ⋯; x 1ð Þ nð Þ
h i

; ð2Þ

where, x 1ð Þ kð Þ ¼ ∑
k

i¼1
x 0ð Þ ið Þ k ¼ 1; 2; ⋯;nð Þ:

Step 3: The grey differential equation of NGBM (1,1) is defined
as:

x 0ð Þ kð Þ þ az 1ð Þ kð Þ ¼ b z 1ð Þ kð Þ
h ir

; ð3Þ

and itswhitenization differential equation is as follows,

dx 1ð Þ

dt
þ ax 1ð Þ ¼ b x 1ð Þ

h ir
; ð4Þ

where, z(1)(k) = px(1)(k) + (1 − p)x(1)(k − 1), k = 2, 3, 4, ⋯, n; p
is called the production coefficient of the background
value with a close interval [0,1]; r is an adjustable
parameter, belonging to any real number excluding r = 1.
Step 4: In order to estimate the parameters a and b, using the
least squares method, Eq. (3) is approximated as:

a; b½ �T ¼ BTB
h i−1

BTY; ð5Þ

where,

B ¼

−z 1ð Þ 2ð Þ z 1ð Þ 2ð Þ
h ir

−z 1ð Þ 3ð Þ z 1ð Þ 3ð Þ
h ir

−z 1ð Þ 4ð Þ z 1ð Þ 4ð Þ
h ir

⋮ ⋮
−z 1ð Þ nð Þ z 1ð Þ nð Þ

h ir

2
666666664

3
777777775
; Y ¼

x 0ð Þ 2ð Þ
x 0ð Þ 3ð Þ
x 0ð Þ 4ð Þ

⋮
x 0ð Þ nð Þ

2
66664

3
77775:

Step 5: Set the initial condition x̂ 1ð Þ 1ð Þ ¼ x 1ð Þ 1ð Þ , and the
solution of Eq. (4) can be expressed as:

x̂ 1ð Þ kð Þ ¼ x 1ð Þ 1ð Þ1−r− b
a

� �
e−a 1−rð Þ k−1ð Þ þ b

a

� �1= 1−rð Þ
; r≠1; k ¼ 1; 2; ⋯:

ð6Þ

Let the initial condition x̂ 1ð Þ mð Þ ¼ x 1ð Þ mð Þ (m = 2,3,…,n),
and the particular solution of Eq. (4) is:

x̂ 1ð Þ kð Þ ¼ x 1ð Þ mð Þ1−r− b
a

� �
e−a 1−rð Þ k−mð Þ þ b

a

� �1= 1−rð Þ
; r≠1; k ¼ 1;2; ⋯:

ð7Þ

Step 6: The inverse accumulated generating operation is
performed on x̂ 1ð Þ kð Þ, and the forecasted value of x̂ 0ð Þ

kð Þ can be estimated as:

x̂ 0ð Þ 1ð Þ ¼ x 0ð Þ 1ð Þ; ð8Þ

x̂ 0ð Þ kð Þ ¼ x̂ 1ð Þ kð Þ−x̂ 1ð Þ k−1ð Þ; k ¼ 2;3; ⋯: ð9Þ

The adjustable parameters r and p need to be
determined by the original data sequence. Therefore,
how to acquire the appropriate values of r and p is an
important issue in NGBM (1,1) applications.
c.a

1.2. The PSO algorithm

The PSO algorithm was designed and introduced by Kennedy
and Eberhart (1995), and was inspired by the motion of a
school of birds looking for food. The main idea of PSO is to
search for the optimal solution by cooperation and informa-
tion sharing. In PSO language, the population is referred to as
a swarm and each individual in the swarm is called a particle.
Particles are initialized with a randomized velocity and
position. The optimal or approximately optimal solution can
be found from iteration to iteration. Each particle is iteratively
updated by its own best fitness value and the best fitness
value of the entire swarm so far.

A particle represents a point in D-dimension space, and its
status can be characterized by its position and velocity. The
position for the ith particle at the kth iteration is described
as Xi

k = (xi1k , xi2k , ⋯, xiDk ). The velocity for the ith particle at the kth
iteration can be denoted as Vi

k = (vi1k , vi2k , ⋯, viDk ). The fitness value
of each particle is decided by the objective function of the
jes
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Table 1 – Simulation results of data sequence A.

Initial condition p r MAPE (%)

x(1)(1) 0.4407 1.6992 6.1205
x(1)(2) 0.4602 1.3535 4.0105
x(1)(3) 0.4451 1.4527 4.0461
x(1)(4) 0.5029 1.3878 5.2296
x(1)(5) 0.5029 1.3878 5.2296
x(1)(6) 0.5029 1.3878 5.2296
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optimizationproblem.The best position so far for the ith particle
until the kth iteration is represented as PBi

k = (pi1k , pi2k , ⋯, piDk ). The
best position so far for the entire swarm until the kth iteration
can be described as GBi

k = (g1k , g2k , ⋯, gDk ). After obtaining the PBi

and GBi, each particle changes its position and velocity
according to the following equations

vkþ1
id ¼ wkvkid þ c1r1 pkid−x

k
id

� �
þ c2r2 gkid−x

k
id

� �
; ð10Þ

wk ¼ wmax−k
wmax−wmin

max num
; ð11Þ

xkþ1
id ¼ xkid þ vkþ1

id ; d ¼ 1; 2; ⋯;D; ð12Þ

where, wk is the inertia weight at the kth iteration. Shi and
Eberhart (1998a) introduced inertia weight, and found that a
dynamic w value can acquire better optimal parameters.
Linearly decreasing weight was used in this study (Shi and
Eberhart, 1998b; Chen and Zhao, 2009). The capability of global
search increases with a large inertia weight and a small inertia
weight facilitates a local search. In Eq. (11), k is the current
generation and maxnum is the maximum generation in each
experiment, and initial inertia weight wmax is 0.9, final inertia
weightwmin is 0.4. In Eq. (10), c1 and c2 are acceleration factors to
control themaximumstep size, r1 and r2 are randomnumbers in
the interval between zero and one.

The procedure of the PSO algorithm is summarized as
follows:

Step 1: Initialize a population of particles, including random
positions and velocities in D dimensions.

Step 2: Estimate the fitness value of each particle.
Step 3: For each particle, compare the fitness value with its

previous best value. If the current fitness value is
better than its previous best value, the current value is
updated to be previous best value.

Step 4: For each particle, compare its fitness value with the
population's previous best value. If the current fitness
value is better than the overall previous best value,
the current value is updated to the current particle's
array index and value.

Step 5: Update the velocity and position of each particle
according to Eqs. (10)–(12).

Step 6: If the stopping iteration condition is not met, loop to
Step 2. The stopping iteration is usually referred to a
maximum number of iterations or a sufficiently good
fitness value.

The PSO algorithm was carried out by MATLAB 8.0 to find
the optimal values of r and p. The PSO parameter values were
set as: maximum number of iterations is 300; population size
is 40; c1 and c2 are both 2; and initial inertia weight and final
inertia weight are 0.9 and 0.4, respectively.

1.3. Optimal parameter estimation

The mean absolute percentage error (MAPE) is a way to
evaluate the simulation and forecasting performance. The
lowest MAPE means highest accuracy and good consistency
between forecasted values and actual values, which is the
purpose for optimizing parameters in the NGBM (1,1) model.
The parameters r and p are optimized with objective function
MAPE, based on the initial condition varying from x(1)(1) to
x(1)(n).

When x(1)(1) is the initial condition, the problem of optimal
parameter estimation can be formulated as below

Min MAPE ¼ 1
n−1

Xn
i¼2

x 0ð Þ kð Þ−x̂ 0ð Þ kð Þj=x 0ð Þðk
���� �� �

� 100%:

 
ð13Þ

When x(1)(m) (m = 2, 3,…, n) is taken as the initial condition,
the objective function is shown as:

Min MAPE ¼ 1
n

Xn
i¼1

x 0ð Þ kð Þ−x̂ 0ð Þ kð Þj=x 0ð Þðk
���� �� �

� 100%:

 
ð14Þ
2. Validation of the optimized NGBM (1,1) model

In this section, two numerical examples, a fluctuating data
sequence and a monotonically increasing data sequence,
were utilized to demonstrate the advantages of the optimized
NGBM (1,1) model.

2.1. A fluctuating data sequence

A fluctuating data sequence X(0) = (1, 2, 3, 4, 3, 2) (Data se-
quence A) (Wang, 2013b) was chosen to be an example to
indicate the improvement in forecasting accuracy of the
optimized NGBM (1,1) models with different initial conditions.
Simulation results are shown in Table 1.

Table 1 reveals that the optimized NGBM (1,1) using x(1)(2)
as the initial condition has a higher simulation accuracy than
those with the other initial conditions. The MAPE of the
optimized NGBM (1,1) model with x(1)(2) as the initial condition
decreased from 6.1205% to 4.0105%. Overall, the difference of
MAPEs among the optimized NGBM (1,1) models with differ-
ent initial conditions is small, and the fitting effect with x(1)(2)
as the initial condition on the same data sequence is better
than the optimized models with the other initial conditions.

2.2. A monotonically increasing data sequence

Like the fluctuating data sequence, a monotonically increas-
ing data sequence (Data sequence B) (Chen, 1990; Yu, 1991)
was used to assess the simulation accuracy of the optimized
NGBM (1,1) models with different initial conditions. The
simulation results of the optimized NGBM (1,1) models using
different initial conditions are shown in Table 2. As can be
jes
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Table 2 – Simulation results of data sequence B.

Initial condition p r MAPE (%)

x(1)(1) 0.6037 4.9992 24.22
x(1)(2) 0.7393 6.0886 31.993
x(1)(3) 0.7769 6.2205 35.045
x(1)(4) 0.8017 6.2903 37.122
x(1)(5) 0.7239 5.9279 30.782
x(1)(6) 0.6337 5.5110 24.121
x(1)(7) 0.3423 1.8824 46.172
x(1)(8) 0.2233 1.7626 47.731
x(1)(9) 0.0341 1.5743 51.891
x(1)(10) 0.0355 1.5761 51.834
x(1)(11) 0.0324 1.5720 51.961

Table 3 – Performance comparisons of the three grey
models with x(1)(1) as the initial condition.

Data sequence MAPE (%)

GM (1,1) GVM NGBM (1,1)

A / ⁎ 15.056 6.1205
B 289.48 114.52 24.22

⁎ No results can be obtained.
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seen in Table 2, the optimized NGBM (1,1) model with x(1)(6) as
the initial condition obtains the best fitting effect with the
minimum MAPE (24.121%).

To show the superiority of the optimized model in
handling a data sequence having nonlinear variations, the
MAPEs of GM (1,1), GVM and NGBM (1,1) using x(1)(1) as the
initial condition for Data sequence A and Data sequence B are
compared in Table 3.

From Table 3, the MAPEs for Data sequence A of GVM and
NGBM (1,1) are 15.056% and 6.1205%, respectively. GM (1,1)
returns no value because the developing coefficient a is
calculated as 0. The MAPEs for the Data sequence B of the
three grey models are 289.48%, 114.52%, and 24.22%, respec-
tively. In general, the optimizedNGBM (1,1) achieves thehighest
simulationprecision among the three greymodels both forData
sequence A and Data sequence B. The performance compari-
sons show that the optimized NGBM (1,1) is effective and
Fig. 1 – Evolution of fitness of the optimized NGBM (1,1) wit
suitable in coping with data sequences having nonlinear
variations.
3. Forecasting DO in the Guanting reservoir inlet
and outlet

3.1. Materials

Guanting reservoir is located at the upper reaches of the
Yongding River in the northwest of Beijing. It was the first
large reservoir built after the foundation of the People's
Republic of China, with a catchment area of 43,402 km2 and
storage capacity of 4.16 billion m3 (Yang and Xu, 2009). The
Sangganhe River, Yanghe River, and Weishuihe River flow
into the Guanting reservoir. Guanting reservoir once served as
Beijing's second largest source of water. However, Guanting
reservoir has not providing drinking water for Beijing since
1997, because it was polluted by industrial wastewater and
domestic sewage. With the development of society, drinking
water consumption is increasing. Therefore, the local govern-
ment decided to restore the Guanting reservoir to being the
second drinking water source.

In this study, DO in the Guanting reservoir inlet (Zhangjia-
kou No. 8 bridge monitoring station) and outlet (Beijing
Yanhecheng monitoring station) were chosen as the research
target. The data for the Guanting reservoir inlet and outlet
from Week 34 to Week 43 in 2013 were used for in-sample
simulation, while data of Week 44 and Week 45 in 2013 were
used for out-of-sample forecasting. The data used in this
paper were collected from the Ministry of Environmental
Protection of the People's Republic of China.
4. Results and discussion

The PSO algorithm parameter values in this paper were set as
mentioned in Section 1.2. Taking x(1)(2) as the initial condition
in the Guanting reservoir inlet and outlet as an example, the
evolution of fitness of the optimized NGBM (1,1) model is
shown in Fig. 1, respectively. As can be seen in Fig. 1, the
fitness value (objective function) converges very fast to a
stationary value, demonstrating the high efficiency of the PSO
technique to solve the parameter optimization problem.
jes
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h x(1)(2) for the Guanting reservoir inlet (a) and outlet (b).
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Table 4 – Simulation and forecasting results for the Guanting reservoir inlet.

Initial condition p r MAPE (%) Week 44 APE (%) Week 45 APE (%)

x(1)(1) 0.5771 -0.0585 3.748 9.65819 3.4067 10.2324 8.0507
x(1)(2) 0.5771 -0.0585 3.3732 9.65819 3.4067 10.2324 8.0507
x(1)(3) 0.6033 -0.0589 3.7885 9.65836 3.4086 10.2317 8.0433
x(1)(4) 0.6173 0.0473 4.189 9.4022 0.666 9.8508 4.0211
x(1)(5) 0.5972 0.0475 4.4729 9.402 0.6638 9.8504 4.0169
x(1)(6) 0.5947 -0.0587 3.6653 9.68883 3.7348 10.2324 8.0507
x(1)(7) 0.4298 0.1271 4.0927 9.3432 0.0343 9.6952 2.378
x(1)(8) 0.4637 0.0864 4.0232 9.4153 0.8062 9.8195 3.6906
x(1)(9) 0.4678 0.0602 3.8703 9.4799 1.4979 9.9165 4.7149
x(1)(10) 0.5019 -0.0504 3.5024 9.70439 3.9014 10.2768 8.5195
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The simulation and forecasting results achieved by the
optimized NGBM (1,1) models with the initial condition
varying from x(1)(1) to x(1)(n) for the Guanting reservoir inlet
and outlet are shown in Tables 4 and 5, respectively. From
Table 4, minimum MAPE (3.3732%) for in-sample simulation
and optimal parameters estimation (p = 0.5771, r = −00.0585)
are obtained with x(1)(2) as the initial condition, while the
forecasting effect of the optimized model with x(1)(7) as the
initial condition (APE for Week 44 is 0.0343%, and APE for
Week 45 is 2.378%) is better than those with the other initial
conditions. The highest MAPE (4.4729%) is acquired with
x(1)(5) as the initial condition, and the highest APEs (3.9014%,
8.5195%) are obtained with x(1)(10) as the initial condition.

From Table 5, the lowest MAPE (3.0309%) for simulation is
obtained with x(1)(2) as the initial condition, while the best
forecasting effect is obtained with x(1)(6) as the initial
condition (APE for Week 44 is 1.9208%, and APE for Week 45
is 1.7953%). The worst simulation effect is shown by the
optimized NGBM (1,1) using x(1)(6) as the initial condition
(MAPE is 3.6992%), and the worst forecasting effect is
illustrated with x(1)(8) as the initial condition (APE for week
44 is 5.6051%, APE for week 45 is 5.6018%).

According to Tables 4 and 5, the optimized NGBM (1,1)
models with different initial conditions perform well in
simulation and forecasting. However, the forecasting accuracy
does not remain consistent with the simulation accuracy. The
minimum MAPE (3.3732%) for the simulation of the Guanting
reservoir inlet is obtained when x(1)(2) is set as the initial
condition, while the lowest APEs (0.0343%, 2.378%) are gained
with x(1)(7) as the initial condition. In the same way, the outlet
simulation results using x(1)(2) as the initial condition have the
highest accuracy, while the optimized model performs best
Table 5 – Simulation and forecasting results for the Guanting re

Initial condition p r MAPE (%)

x(1)(1) 0.907 -0.0905 3.3675
x(1)(2) 0.907 -0.0905 3.0309
x(1)(3) 0.9533 -0.1722 3.1939
x(1)(4) 0.9744 -0.2132 3.2871
x(1)(5) 0.9717 -0.2079 3.2747
x(1)(6) 0.0013 -0.0595 3.6992
x(1)(7) 0.6763 -0.0896 3.1153
x(1)(8) 0.9992 -0.0898 3.3184
x(1)(9) 1 -0.0901 3.2754
s(1)(10) 0.5377 -0.0898 3.1697
with theminimumAPEs (1.9208%, 1.7953%) when x(1)(6) is set as
the initial condition.

The validation and empirical results indicate that using
x(1)(n) as the initial condition is not better than the traditional
method (x(1)(1) set as the initial condition) (Zhang et al., 2002;
Wang, 2013a).
5. Conclusions and future work

NGBM (1,1), a simplemodification of GM (1,1) with the Bernoulli
differential equation, can be used to forecast small sample time
series. The PSO technique of simultaneously optimizing the
power index r and the production coefficient of the background
value p is introduced in the NGBM (1,1) model to improve its
simulation and forecasting performance. Moreover, the initial
condition is set from x(1)(1) to x(1)(n) to obtain the highest
simulation and forecasting precision. The optimizedNGBM (1,1)
models with different initial conditions are employed in the
simulation and forecasting DO in the Guanting reservoir inlet
and outlet (China).

The validation results of the optimized NGBM (1,1) models
with different initial conditions reveal that the optimized
model performs the best among the three grey models. The
empirical results show that the optimized NGBM (1,1) model
has a strong adaptability to the original nonlinear data
sequence, and the PSO algorithm is an effective and efficient
tool to solve the parameter optimization problem in the
NGBM (1,1)model.What'smore, the optimizedmodel with an
initial condition that performs well in in-sample simulation
may not do as well as in out-of-sample forecasting. Overall,
the simulation and forecasting performance is satisfactory.
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servoir outlet.

Week 44 APE (%) Week 45 APE (%)

8.9806 5.1679 9.2698 5.1198
8.9806 5.1679 9.2698 5.1198
9.0909 4.0032 9.4504 3.2712
9.1444 3.4382 9.5381 2.3736
9.1376 3.51 9.5269 2.4882
9.2881 1.9208 9.5946 1.7953
9.0697 4.227 9.3709 4.085
8.9392 5.6051 9.2227 5.6018
8.9404 5.5924 9.2242 5.5865
9.1287 3.604 9.4389 3.3889
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Considering that grey models are customarily applied to
short-term forecasting, the computational complexity is
acceptable. Therefore, the different initial conditions can be
calculated in the optimized NGBM (1,1) model to achieve the
highest simulation and forecasting accuracy.

Using as the initial condition each item in the first-order
accumulated generating sequence does increase the computa-
tional complexity to some degree, although it is acceptable. In
the future, we will try some methods to obtain the weighted
sum of x(1)(1) and x(1)(n) as the initial condition to simplify the
computational procedure. Meanwhile, in future work the new
method and the method in this paper will be compared.
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