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As one of the transition metals, vanadium (V) (V(V)) in trace amounts represents an
essential element for normal cell growth, but becomes toxic when its concentration is
above 1 mg/L. V(V) can alter cellular differentiation, gene expression, and other biochemical
and metabolic phenomena. A feasible method to detoxify V(V) is to reduce it to V(IV), which
precipitates and can be readily removed from the water. The bioreduction of V(V) in a
contaminated groundwater was investigated using autohydrogentrophic bacteria and
hydrogen gas as the electron donor. Compared with the previous organic donors,
H2 shows the advantages as an ideal electron donor, including nontoxicity and less
production of excess biomass. V(V) was 95.5% removed by biochemical reduction when
autohydrogentrophic bacteria and hydrogen were both present, and the reduced V(IV)
precipitated, leading to total-V removal. Reduction kinetics could be described by a
first-order model and were sensitive to pH and temperature, with the optimum ranges of
pH 7.5–8.0 and 35–40°C, respectively. Phylogenetic analysis by clone library showed that
the dominant species in the experiments with V(V) bioreduction belonged to the
β-Proteobacteria. Previously known V(V)-reducing species were absent, suggesting that V(V)
reduction was carried out by novel species. Their selective enrichment during V(V)
bioreduction suggests that Rhodocyclus, a denitrifying bacterium, and Clostridium, a
fermenter known to carry out metal reduction, were responsible for V(V) bioreduction.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

As one of the transition metals, vanadium (V) in trace amounts
represents an essential element for normal cell growth, but
becomes toxic when its concentration is above 1 mg/L (Patel
gmail.com (Siqing Xia), zh

o-Environmental Science
et al., 1990). The toxic effects of V are based on the structural
similarity between vanadate and phosphate (Rehder,
2003). As a phosphorus analog, V inhibits the activity of
phosphate-metabolizing enzymes (Stankiewicz et al., 1995).
Vanadate has mutagenic, genotoxic, and cytotoxic effects,
iqiang@tongji.edu.cn (Zhiqiang Zhang).
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altering cellular differentiation, gene expression, and other
biochemical and metabolic phenomena (Altamirano-Lozano,
1998).

In China, the V concentration in drinking water is limited
to below 0.05 mg/L (Standard of China GB 5749-2006). Howev-
er, as the main source of drinking water in many regions, the
V concentration in groundwater can rise to high levels once V
pollution occurs (Giammanco et al., 1996). Sources of V in
groundwater are dissolution of V-rich rocks and waste
streams from industrial processes (Wright and Belitz, 2010).
Pentavalent V and tetravalent V are relatively stable in
aqueous solution at neutral pH in the forms of H2VO4

−

and VO2+, respectively (Crans et al., 2004). V(IV) is less toxic
(Patel et al., 1990) and much more readily precipitated
(Ortiz-Bernad et al., 2004) than V(V). Ortiz-Bernad et al.
(2004), using electron microprobe analysis, found that a V(IV)
precipitate was mainly composed of V and P, suggesting that
it was a vanadyl phosphate, such as the green mineral
sincosite (CaV2(PO4)2(OH)4·3H2O). Thus, a feasible method to
detoxify V(V) is to reduce it to V(IV), which precipitates
and can be readily removed from the water.

According to Antipov et al. (2000), Pseudomonas isachenkovii
has two kinds of nitrate reductases that can participate in V(V)
reduction. Other bacteria found to reduce V(V) to V(IV) are
Shewanella oneidensis (Carpentier et al., 2003), Geobacter
metallireducens (Ortiz-Bernad et al., 2004), Acidithiobacillus
ferrooxidans and thiooxidans (Bredberg et al., 2004), and
Rhodoferax ferrireducens in a microbial fuel cell (Li et al.,
2009). One eukaryotic strain, Saccharomyces cerevisiae, was
capable of reducing V(V) to vanadyl (Bisconti et al., 1997).
A mesophilic (Methanosarcina mazei) methanogen and a ther-
mophilic (Methanothermobacter thermautotrophicus) methanogen,
belonging to archaeal, were reported as vanadium-reducing
microbes (Zhang et al., 2014). All the reported microbial
reductions of V(V) are in common that the bacteria are
anaerobic, chemotrophic heterotrophs.

Autohydrogentrophic bacteria use hydrogen gas (H2) as their
electron donor. Compared with the organic donors, H2 has
advantages as an electron donor, including nontoxicity to
environments, less production of excess biomass, and usually
lower cost per electron equivalent (Rittmann et al., 2004).
In addition, many oxidized contaminants can be reduced to less
toxic or less mobile form by autohydrogentrophic microorgan-
isms. For instance, nitrate can be reduced to N2 (Lee and
Rittmann, 2002; Xia et al., 2013); perchlorate (ClO4

−) can be reduced
to less toxic Cl− and H2O (Nerenberg and Rittmann, 2004);
selenium can be reduced from selenate (SeO4

2−) to less mobile
selenite (Se2−) or elemental selenium (Se°) (Chung et al., 2006);
and chromiumcanbe reduced fromhexavalent chromate (CrO4

2−)
to less toxic Cr3+, which precipitates as Cr(OH)3 and is removed
from the water. Due to its chemical similarity, vanadate (H2VO4

−)
should be reduced similarly to chromate (CrO4

2−) (Gubanov et al.,
1975). The stoichiometry of vanadate (H2VO4

−) reduction with
hydrogen as the electron donor is (Li et al., 2009; Nerenberg and
Rittmann, 2004):

H2VO
−

4 þ 4Hþ þ e− ¼ VO2þ þ 3H2O ð1Þ

H2 ¼ 2H2þ þ 2e−: ð2Þ
Here, we explored the bioreduction of V(V) by auto-
hydrogentrophic bacteria. We investigated the effects of
some key environmental factors – pH and temperature – on
bioreduction, and we also assessed the microbial community
structure by clone library and identified species potentially
reducing V(V).
1. Materials and methods

1.1. Experimental setup

Serum bottles (250-mL total volume) were selected as reactors
because they can be made gas-tight. The liquid volume of
each bottle was 200 mL, and we added 180 mL feed medium
and 20 mL inoculation sludge by sterilized syringes. Air in the
top of the reactor was expelled out then H2 was injected via a
syringe needle. The bottles were sealed with a rubber plug
after H2 injection. Each bottle was covered with aluminum foil
and incubated on a shaking table operated at 150 r/min.
Liquid samples were taken by sterilized syringes. Each time
after sampling, hydrogen gas was replenished to ensure that
the bacteria had sufficient electron donor.

1.2. Medium

The composition of the culturemediumwas (mg/L): KH2PO4 292,
Na2HPO4·12H2O 663, MgSO4·7H2O 128, NaNO3 60, CaCl2·2H2O 1,
FeSO4·7H2O 1, ZnSO4·7H2O 0.013, H3BO3 0.038, CuCl2·2H2O 0.001,
Na2MoO4·2H2O 0.004, MnCl2·4H2O 0.004, CoCl2·6H2O 0.025,
and NiCl2·6H2O 0.001 (Chung et al., 2006). Phosphate buffer
(KH2PO4 + Na2HPO4) was used to control the pH, since denitri-
fication, sulfate reduction, and vanadate reduction add base to
the aqueous phase (Crans et al., 2010; Lee and Rittmann, 2003).
All media were purged with N2 gas to eliminate dissolved O2.

1.3. Inoculum and V(V)-bioreduction experiments

The inoculum was obtained from the anoxic pond at Quyang
Wastewater Treatment Plant (Shanghai, China). The main
characteristics (average ± standard deviations of triplicates)
were: pH 6.5 ± 0.3, total solids (TS) 2.84 ± 0.21 g/L, volatile
solids (VS) 2.23 ± 0.23 g/L, total suspended solids (TSS) 2.68 ±
0.18 g/L, and volatile suspended solids (VSS) 2.13 ± 0.32 g/L.
Inoculated sludge was firstly enriched with medium contain-
ing nitrate (10 mg NO3

−-N/L) and sulfate (50 mg SO4
2−/L). The

nitrate and sulfate were completely removed within 3 days.
Then the mixed gas was exhausted and the reactor was
replenished with pure hydrogen. V(V) was added as the only
acceptor. To ensure that all reactions were biologically
mediated, two controls (without inoculum and without H2)
were carried out in parallel: without inoculum andwithout H2.
Each parallel was carried out starting with V(V) of 2 mg/L, pH
of 7.5, and a temperature of 35°C. Matrix experiments were
conducted to study the effects of pH and temperature. To
evaluate the effect of pH, the starting pH values were set to
6.0, 6.5, 7.0, 7.5, or 8.0, with starting V(V) concentration and
temperature at 2 mg/L and 35°C, respectively. To study the
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Fig. 1 – Concentrations of (a) total soluble V and (b) V(IV) with
starting V(V) of 2 mg V/L, pH of 7.5, and a temperature of
35°C; (c) first-order fit of the V(V) removal results. The k1
value is 0.0096 hr−1.
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impact of temperature, the experiments were carried out at
15, 20, 25, 30, 35, and 40°C, with the initial V(V) concentration
and pH value at 2 mg/L and 7.5, respectively.

1.4. Sampling and analyses

For daily sampling, 1 mL suspension was taken to meet the
minimum analysis requirements. All the liquid samples were
filtered with a 0.22-μm polyether sulfone membrane filter
(Anpel Company, Shanghai, China) and kept in the refrigera-
tor at 4°C. V(V) is soluble in basic and acidic solutions,
while V(IV) is soluble in acid solutions and not oxidized to
V(V) below pH 2.4 (Carpentier et al., 2003). Therefore, to
preserve the V(V) and V(IV) concentrations, we adjusted the
pH of samples for V analysis to below 2 with 5-N nitric acid.
Samples for other analyses did not receive nitric acid.
Analyses of NO3

−-N, NO2
−-N, and SO4

2− were carried out by ion
chromatography (ICS-1000, Dionex, USA) using an AS-20
column, an AG-20 pre-column, and a 150-mg/L injection
loop (Xia et al., 2011). The different valence states of V
were separated by a liquid chromatograph (LC) equipped
with a CRC8 reversed-phase column (Agilent, 3 μm diam.
particles, 3 mm i.d. × 150 mm length) and determined by
ICP-MS (Agilent Technologies 7700 Series). The starting and
ending pH values were measured with a pHS-29A meter
(HACH, USA).

1.5. 16S rRNA clone libraries

Three 16S rRNA clone libraries were constructed to identify
potentially important species for V(V)-bioreduction: the
inoculum sludge (inoculum), sludge enriched with nitrate
and sulfate (NS-bioreduction) and the V(V)-selected biomass
(V(V)-bioreduction) on day 12, when V(V) reduction was
almost finished. For each sample, we removed 10 mL of
suspension with a sterilized syringe, centrifuged the samples
for 20 min at 12,000 g, decanted the supernatant, resuspend-
ed the pellet in PBS buffer (Na2HPO4; KH2PO4; NaCl; KCl), and
immediately froze and stored the cells at −70°C (Xia et al.,
2010). For DNA extractions, the samples were thawed
and put into a Fast DNA Spin Kit (MP Biomedical,
LLC, France) following the manufacturer's protocol. We
amplified the extracted DNA with the bacterial universal
primers 27f [5′-AGAGTTTGATCCTGGCTCAG-3′] and 1492r
[5′-GGTTACCTTGTTACGACTT-3′] and purified it with a
QIAquick PCR purification kit (QIAGEN) (Duan et al., 2009). For
16S rDNA gene cloning, we inserted the purified PCR amplicons
into a cloning vector. The individual PCR amplicons in each
vector were cloned via the growth of the host cells on an
ampicillin-supplemented LB medium. When the vectors
containing PCR products were isolated, we randomly selected
for sequencing 120 for inoculum and NS-bioreduction and
150 for V(V)-bioreduction (BGI, Shanghai, China); 109, 100
and 132 clones gave successful results, respectively. We
constructed a phylogenetic tree using the neighbor-joining
algorithm in MEGA5 software (Tamura et al., 2011). The
16S rRNA gene sequences from this study have been
deposited in the National Institutes of Health genetic sequence
database (GenBank) under accession numbers GU257488 to
GU257893.
2. Results and discussion

2.1. Vanadium (V) bioreduction

Fig. 1 summarizes the results of V(V)-reduction experiments,
as well as the controls. In the abiotic control (no inoculum),
the concentration of V(V) did not change. In the control
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without H2 (N2 replacing H2), the removal percentage of total
soluble vanadium was only 3% and the V(IV) concentration
was almost zero. When H2 and inoculum were both present,
V(V)-reduction occurred versus time. As shown in Fig. 1a, the
concentration of total soluble V decreased from 2 to 1.89 mg/L
by 10 hr after V(V) addition, and the residual vanadium was
1.62 mg/L V(V) and 0.27 mg/L V(IV). The concentration of total
soluble vanadium continued to decline, but detected V(IV)
remained at a low concentration (Fig. 1b), leading to the
removal of V(V). By day 12, the average removal of total V
stabilized at 95.5%.

The results were fit with a first-order model, as shown in
Fig. 1c. The linearized form of first order equation is:

ln Ct=C0ð Þ ¼ − k1 t ð3Þ

where, C0 (mg/L) and Ct (mg/L) are the concentrations at the
initial condition and at time t (hr), respectively, and k1 is the
first-order rate coefficient. The estimated k1 was 0.0096 hr−1.

The results of V(V)-reduction experiments, as well as the
controlsdemonstrate thatV(V)-reductionbyautohydrogentrophic
bacteria is a bioreduction process. The approximately stable
V(V) concentration in the abiotic control (no inoculum) and the
control without H2 (N2 replaced H2) indicate that chemical
reduction of V(V) by H2 was infeasible and that endogenous
respiration and adsorption to biomass caused minimal reduc-
tion of V(V), respectively. The undetected V(IV) in the no-H2

control also suggests that V(V) was not reduced without an
added electron donor. Bioreduction of V(V) occurred when H2

and autohydrogentrophic inoculum were present simulta-
neously. The detected V(IV) clearly indicated V(V) reduction to
V(IV). Then, the detected V(IV) decreased and remained at a low
concentration, suggesting that V(IV) was precipitated and
removed by filtration.

2.2. Effect of pH value and temperature

The results of the experiments evaluating the effect of pH are
shown in Fig. 2. The pH range was set between 6-8 due to the
restrictions of the buffering capacity. Because the ending pH
was only slightly higher (<0.2 pH units) than the starting one,
the effects from pH change can be ignored. As shown in
Fig. 2a, the ending total soluble V concentration decreased as
pH increased from 6.0 to 8.0. The biggest impact of pH was
between pH values of 7.0 and 7.5, pH = 8.0 gave faster removal
from 50 to 150 hr, and pH ≥ 7.5 gave more than 90% total-V
loss. The optimum pH was identified as 7.5–8.0 based on the
experimental results. This trend is similar to Li et al. (2009),
who found an optimal pH of 7.5 with heterotrophic bacteria.
The benefit from slightly alkaline conditions may be benefi-
cial, because denitrification and sulfate reduction add base
that can cause a pH increase.

The influence of temperature on V(V)-reduction is pre-
sented in Fig. 2b. As is expected, higher temperature led to
faster reduction in the range of 15-40°C. 40°C and 35°C
achieved 91.5% and 88.5% removal percentages in 225 hr,
respectively. Since the temperature for groundwater is scarce-
ly above 40 °C, experiments under higher temperature were
not carried out. Similar to the trends with lower pH (Fig. 1a),
total soluble V plateaued for 15, 20, and 25 °C.
The kinetic results were fitted to a first-order kinetic model
to obtain k1 values (Fig. 2b); we used only the results before
plateauing. We then fit the k1 results with the Arrhenius
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 Uncultured anaerobic bacterium (AY953212.1)
 OTU3(12-132)
 OTU27(1-132)
 Uncultured Bacteroidetes bacterium (AB723846.1)
 OTU32(1-132)
 Uncultured bacterium (HQ260947.1)
 Iron-reducing enrichment clone Cl-A4 (DQ676996.2)
 OTU44(1-132)
 OTU19(1-132)
 Uncultured Porphyromonadaceae bacterium (JQ815609.1)
 Bacterium enrichment culture clone R4-72B (GU196234.1)
 OTU9(3-132)
 OTU38(1-132)
 Uncultured Sphingobacteriales bacterium (EU305589.1)
 OTU31(1-132)
 Uncultured bacterium (FJ356024.1)
 OTU29(1-132)
 Arcobacter butzleri (FJ968634.1)
 OTU11(25-132)
 OTU5(12-132)
 Uncultured epsilon proteobacterium (DQ069190.1)
 OTU40(1-132)
 Uncultured delta proteobacterium (EU328047.1)
 OTU17(1-132)
 Uncultured Acidobacteria bacterium (EF562546.1)
 OTU23(1-132)
 Uncultured Acidobacteria bacterium (HQ597790.1)
 OTU26(1-132)
 Uncultured Acidobacteria bacterium (HQ597557.1)
 Fusibacter sp. SA1 (AF491333.1)
 OTU7(3-132)
 OTU47(1-132)
 Uncultured Clostridiaceae bacterium (FM204961.1)
 Iron-reducing bacterium enrichment culture clone HN117 (FJ269074.1)
 OTU18(1-132)
 OTU24(1-132)
 Uncultured Firmicutes bacterium (JN825544.1)
 OTU12(3-132)
 Uncultured bacterium mle1-9 (AF280848.1)
 OTU22(3-132)
 Uncultured Thermoanaerobacteriaceae bacterium (AY684097.1)
 OTU37(1-132)
 Uncultured low G+C Gram-positive bacterium (AY128088.1)
 Actinomyces naeslundii(X53226.1)

Fig. 3 – Phylogenetic relationships among all bacteria (identified by OTU) determined with the clone library from the
V(V)-reduction experiment.
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model. The linearized form of Arrhenius equation is:

lnk ¼ −Ea=RT þ lnA ð4Þ
where, Ea (J/mol) is the activation energy, and T (K) is the
absolute temperature. The Arrhenius fit in Fig. 2c quantifies
how V(V)-reduction was sensitive to temperature. The Ea
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value is 36 kJ/mol, which is a moderately low value for
aqueous-solution reactions (Stumm and Morgan, 1981), one
consistent with biochemical catalysis.

2.3. Phylogenetic analysis

The clones for each sample could be grouped into 37 OTUs
(inoculum), 40 OTUs (NS-bioreduction), and 48 OTUs
(V(V)-bioreduction) on the basis of more than 97% sequence
similarity within an OTU. Fig. 3 shows the phylogenetic tree
of the 48 OTUs in V(V)-bioreduction. Prominent OTUs in
V(V)-bioreduction include β-Proteobacteria (28.8%), ε-Proteobacteria
(28.0%), Firmicutes (24.2%), and γ-Proteobacteria (3.0%). Many
known H2-oxidizers were present, such as Rhodocyclus,
Hydrogenophaga, and Dechloromonas (Van Ginkel et al.,
2010; Zhang et al., 2009). Rhodocyclus was reported to do
denitrification (Smith et al., 1994, 2005); Dechloromonas
can reduce sulfate, nitrate, and nitrite (Horn et al., 2005);
andHydrogenophaga is an autotrophic denitrifier (Kämpfer et al.,
2005). The presence of nitrate and sulfate reducers is expected,
because the inoculum was enriched with both acceptors
present.

Previously known V(V)-reducing species were absent
(Antipov et al., 2000; Bredberg et al., 2004; Carpentier et al.,
2003; Li et al., 2009; Ortiz-Bernad et al., 2004), suggesting that
V(V) bioreduction was carried out by novel strains of V(V)
reducers, which may include some of the sulfate- and/or
nitrate-reducing bacteria in the inoculum.

Fig. 4 shows the relative proportions of the predominant
bacterial genera in the three samples. The genera that became
especially dominant in V(V)-bioreduction were Rhodocyclus
and Clostridium, because their abundance increased signifi-
cantly compared with the inoculum and NS-bioreduction.

This selective dominance in V-bioreduction suggests that
Rhodocyclus, a denitrifying bacterium (Smith et al., 1994, 2005)
and Clostridium, a fermenter (Rutter, 1970) may have been
responsible for V(V) bioreduction.

Rhodocyclus is a purple non-sulfur photosynthetic bacteri-
um, with the capacity to grow chemoautotrophically based on
H2 oxidation with either oxygen or nitrate as the electron
acceptor (Smith et al., 1994), although nothing is reported on
V(IV) reduction. Strains of the phototrophic bacteria previous-
ly referred to as “Rhodocyclus gelatinosus-like (RGL)” were
studied in comparison with Rhodocyclus species by Hiraishi et
al. (1991). DNA hybridization studies showed that the RGL
strain was closely related to the other strains, but exhibited
low levels of the homology to the other Rhodocyclus species.
Thus, the RGL group was established as a new taxon of the
purple non-sulfur bacteria: Rhodoferax (Hiraishi et al., 1991).
According to Li et al. (2009), Rhodoferax can reduce V(V) to V(IV),
which lends support to that a Rhodocyclus strain might also
carry out V(V)-reduction.

Clostridium, which was normally classified as a fermenter,
was reported to solubilize ferric iron in hematite, goethite,
and ferrites and to solubilize Mn(IV) in pyrolusite by enzy-
matic reduction and the oxides of cadmium, copper, lead, and
zinc related to the production of organic acid metabolites
(Francis and Dodge, 1990, 1988). According to Francis et al.
(1994), U(VI) was reduced to U(IV) by the growing and resting
Clostridium due to the enzymatic action. Thus, physiological
characterization of Clostidium supports that it could be active
in V(V) reduction.

Dechloromonas and Hydrogenophaga were important in
V(V)-bioreduction, but their relative abundances were
similar to NS-bioreduction, suggesting that Dechloromonas
and Hydrogenophaga were not specially associated with
V(V)-reduction.
3. Conclusions

This study investigated the bioreduction of V(V) in groundwater
by autohydrogentrophic bacteria. Microbial V(V) reduction led
to about 95.5% removal in 14 days. DetectedV(IV) indicated that
V(V) was reduced to V(VI) and then precipitated in the reactor.
Phylogenetic analysis by clone library showed that the predom-
inant OTUs were within the Proteobacteria in the V(V)-reducing
community. Previously known V(V)-reducing species were
absent, suggesting that V(V) reduction was carried out by
novel species. Rhodocyclus and Clostridium became selectively
dominant when V(V) was reduced, suggesting that one or both
was responsible for V(V) reduction.
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