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The great spatial and temporal variability in hydrological conditions and nitrogen (N)
processing introduces large uncertainties to the identification of N sources and quantifying
N cycles in plain river network regions. By combining isotopic data with chemical and
hydrologic measurements, we determined the relative importance of N sources and
biogeochemical N processes in the Taige River in the East Plain Region of China. The river
was polluted more seriously by anthropogenic inputs in winter than in summer. Manure
and urban sewage effluent were the main nitrate (NO3

−) sources, with the nitrification of
N-containing organic materials serving as another important source of NO3

−. In the
downstream, with minor variations in hydrological conditions, nitrification played a more
important role than assimilation for the decreasing ammonium (NH4

+-N) concentrations.
The N isotopic enrichment factors (ε) during NH4

+ utilization ranged from −13.88‰ in March
to −29.00‰ in July. The ratio of the increase in δ18O and δ15N of river NO3

− in the downstream
was 1.04 in January and 0.92 in March. This ratio indicated that NO3

− assimilation by
phytoplankton was responsible for the increasing δ15N and δ18O values of NO3

− in winter. The
relationships between δ15N of particulate organic nitrogen and isotopic compositions of
dissolved inorganic nitrogen indicated that the phytoplankton in the Taige River probably
utilized NH4

+ preferentially and mainly in summer, while in winter, NO3
− assimilation by

phytoplankton was dominant.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Nitrogen (N) contamination in freshwater systems is a
worldwide environmental problem. High levels of N not only
pose a potential threat to human health but also stimulate
water eutrophication (Kendall, 1998; Lee et al., 2008). External
supplies of N to river water are generally associated with
inputs from anthropogenic activities (e.g., municipal and
industrial wastewater, livestock wastewater, atmospheric
3.net (Beidou Xi).

o-Environmental Science
deposition and agricultural runoff). N usually undergoes
numerous transformations, such as nitrification, assimila-
tion, and denitrification; the occurrence and extent of these
processes depend on a variety of environmental variables
(Middelburg and Nieuwenhuize, 2001). Identification of the
sources and forms of N, as well as their changes with time, is
an important step in improving the management practices
associated with maintaining water quality in rivers (Sugimoto
et al., 2011; Li et al., 2010).
s, Chinese Academy of Sciences. Published by Elsevier B.V.
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Many studies have shown that stable isotope techniques
are useful in understanding N sources and cycling in
terrestrial and aquatic ecosystems (Wells and Krothe, 1989;
Feast et al., 1998; Mayer et al., 2002; Curt et al., 2004). Dual
isotope analysis of nitrate (δ15N-NO3

− and δ18O-NO3
−) has been

frequently used to differentiate NO3
− sources because of the

distinct isotopic characteristics of the main NO3
− sources, such

as rain, chemical fertilizers, and NO3
− derived from nitrifica-

tion (Xue et al., 2009; Nestler et al., 2011). To provide valuable
information for identifying NO3

− sources and the processes
during NO3

− retention and transport in watersheds, scientists
have used this dual-isotope technique in combination with
physicochemical water quality data, precipitation data, hy-
drological data, land use data, and other tracers (e.g., boron
isotopes, chloride) in forested (Burns et al., 2009; Piatek et al.,
2009), agricultural (Deutsch et al., 2006; Johannsen et al., 2008),
urban, andmixed watersheds (Kaushal et al., 2011; Chen et al.,
2012).

Zhushan Bay is a semi-closed lacustrine bay in the north of
Taihu Lake, the third largest freshwater lake in the East Plain
Region in China (Fig. 1). Zhushan Bay suffers from steadily
worsening eutrophication caused by the inflow of nutrients
from the Taige River (Yan et al., 2011; Zhang et al., 2011). The
river catchment basin is flat, with intersecting rivers and water
flowing slowly (annualmean flow velocity is 0.13 m/sec). Due to
the complexity of rivers and the channel network of rivers, it is
difficult to identify the sources of nutrients, especially the
sources of nitrogen and its biogeochemical processes in the
Taihu Lake watershed. To our knowledge, few works on N
isotopes have been completed in the context of the region,
probably resulting from the fact that isotopic signatures of N
sources in such regions are obscured by complicated hydro-
graphic connections and the mixing of multiple N sources with
overlapping isotopic composition as well as in situ biogeochem-
ical processes.

The present study analyzed the chemical parameters and
isotopic compositions of NO3

−, NH4
+, and particulate organic
N

Fig. 1 – Sampling sites in the ma
matter (POM) in the water in the plain river network region.
The specific goals of the study were to (1) evaluate the spatial
variations in dissolved inorganic nitrogen (DIN) concentra-
tions and isotopic compositions as well as the dominant
sources of river NO3

−, (2) evaluate the relative role of NO3
− and

NH4
+ in the origin of POM in the river using DIN isotopic data,

and (3) investigate possible seasonal shifts in nutrient sources
(NO3

− or NH4
+) for phytoplankton in the river.
1. Materials and methods

1.1. Study site

Known as the main channel between Gehu Lake and Zhushan
Bay, the Taige River empties into the northern part of
Zhushan Bay of Taihu Lake (Fig. 1). The river is about
22.4 km long and 40 m wide on average. The slope ratio is
1:3. The mean annual discharge and velocity are 10.8 m3/sec
and 0.13 m/sec, respectively. Fourteen main tributaries are
directly connected to the Taige River. At most times, the flow
direction is from north to south, but the direction is
occasionally unsteady because of the variation in water levels
and sluice gates of the tributaries. The river catchment is
located in the Wujin District in Jiangsu Province. This area,
with a population of about 0.18 million people and an area of
179.06 km2, is a typical plain river network region in the east
of China, where the economy is developed and water
pollution is severe. The area is a mixed land use watershed,
which mainly serves agriculture (38% of land area in crops),
residential, and industrial purposes. Many villages and
townships characterized by high population density, ur-
banization, and economic development are situated along
the banks of the upstream water catchment area of the
Taige River. Water pollutants in the Taige River originate
from different pollution sources and combinations of
pollutants.
Sampling sites in Taige River

Flow direction

in stream of the Taige River.
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Fig. 2 – Longitudinal plots of averaged flow quantity (Q) and
velocity (V) in the Taige River referenced to kilometers
downstream from site R1.
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1.2. Sampling

Twelve sites in the main stream of the Taige River were chosen
forwater sample collection (Fig. 1). Samplings in themain stream
were performed on 9 January, 6 March, 7 May and 9 July in 2013.
The discharge and flow velocity in each site was determined
using an Acoustic Doppler Current Profiler. All sampling equip-
ment was pre-cleaned with deionized water. Water temperature
and dissolved oxygen (DO) were measured using a portable
instrument (YSI 650MDS, Xylem, Yellow Springs, Ohio, USA)
in situ. Water samples at 20 cm depth in the middle of the river
were collected by boat and stored in pre-cleaned polyethylene
bottles. About 300 mL of collected water samples was filtered on
site through pre-combusted (450°C, 12 hr) and individually
pre-weighed glass fiber filters (Whatman, GF/F, 47 mm in
diameter). Filtrate and filter samples were stored at −30°C until
needed for further treatments. In addition, 0.6 L ofwater samples
was immediately carried back to the laboratory for nutrient
concentration determination, within 24 hr at most.

1.3. Analytical methods

Water samples were filtered through 0.45 μm cellulose-
acetate filter paper into polyethylene bottles and stored at
4°C until analysis. NH4

+-N concentrations were analyzed on a
continuous flow analyzer. NO3

−-N, nitrite (NO2
−-N), and chloride

analyses were carried out by ion chromatography.
Isotopic analyses of N and oxygen of NO3

− were carried out
using the denitrifier method (Sigman et al., 2001; Casciotti
et al., 2002) based on the isotopic analysis of the nitrous oxide
(N2O) produced by denitrifying Pseudomonas aureofaciens. The
N2O was concentrated and purified on a Tracegas system, and
the isotopic composition was determined using an isotope ratio
mass spectrometer (IRMS; Isoprime100, Isoprime, Cheadle, UK)
calibrated with ultra-high purity N2 gas against air N (Xu et
al., 2013). During measurement of δ15N, USGS34 potassium
nitrate (KNO3, δ15N = −1.8‰ ± 0.2‰) and USGS32 KNO3

(δ15N =+18‰ ± 1‰) standards were used to correct the
values obtained. For δ18O measurement, the samples were
referenced using USGS34 (δ18O = +27.9‰ ± 0.6‰) and
USGS35 sodium nitrate (NaNO3, δ18O = +57.5‰ ± 0.6‰) stan-
dards. The stable isotope ratios are expressed in delta (δ) units
and a per mil (‰) notation relative to an international standard:

δsample ¼ Rsample=Rstandard−1
� �� 1000‰ ð1Þ

where, Rsample and Rstandard are the 15N/14N or 18O/16O ratios of the
sample and standard for δ15N and δ18O, respectively. Values of
δ15N are reported relative to N2 in atmospheric air, and δ18O
values are reported relative to Vienna Standard Mean Ocean
Water. The analytical precision of the δ15N-NO3

− and δ18O-NO3
− are

±0.2‰ and ±0.5‰, respectively.
Determination of δ15N-NH4

+ values was carried out using
the ammonia distillation method of Velinski et al. (1989). The
analytical precision of the δ15N-NH4

+ samples was ±0.5‰. For
the determination of the POM concentration as well as the
δ13C-POC and δ15N-PN values, the GF/F filters were treated as
follows in the laboratory. The filter samples were slightly
wetted by hydrochloric acid (0.6 mol/L) and put in a desiccator
overnight with hydrochloric acid (0.6 mol/L) fumes to remove
inorganic carbon. Subsequently, the filters were rinsed with
deionized water to remove chloride, dried using a vacuum
freeze dryer for 24 hr, and weighed to calculate POM concentra-
tion by weight difference. Then, δ13C-POC, δ15N-PN, and C/N
ratios were measured in an elemental analyzer (vario PYRO
cube, Elementar, Hanau, Germany) connected online to an IRMS.
Values are reported relative to atmosphericN2 (δ15N) andVienna
PeeDee Belemnite (δ13C). The analytical precision for both stable
isotope ratios was ±0.2‰.
2. Results and discussion

2.1. Hydrological features and seasonal variation
of water chemistry

The flow quantity (Q) and velocity (V) of the Taige River in the
study period were 21.75 ± 13.42 m3/sec and 0.28 ± 0.16 m/sec
(mean ± standard deviation (SD)), respectively. The factor that
significantly influenced the hydrological condition of the river
was the flow input from the Xilicao River (T2; Q = 24.30 ±
8.75 m3/sec), which divides the Taige River into two sections
with different hydrological features (Fig. 2). The Q of the
upstream (before site R8), with lower Q (7.17 ± 2.52 m3/sec)
and V (0.11 ± 0.05 m/sec) than the downstream (Q = 33.90 ±
0.57 m3/sec, V = 0.42 ± 0.04 m/sec), was strongly influenced
by the Wuyi River (T5), Yongan River (T4), and Xinxilicao River
(T3). In the downstream, the Q was almost constant and the V
decreased slowly because of the backwater region of Zhushan
Bay.

During the sampling period, NH4
+-N, NO3

−-N, NO2
−-N and Cl−

concentrations ranged from 0.35 to 4.01 mg/L, from 0.42 to
3.75 mg/L, from 0.06 to 0.32 mg/L and from 56.1 to 130.2 mg/L,
respectively. In order to get a better understanding of the
temporal variability of water chemistry in the river water, it
was helpful to divide the data into two seasonal periods,
winter (January and March, average temperature = 9.2°C) and
summer (May and July, average temperature = 25.5°C). NH4

+-N,
NO3

−-N and Cl− concentrations in winter were higher than in
summer, while NO2

− concentrations were higher in summer
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(Fig. 3). This finding can be attributed to the dilution by the
rain in the rainy season (June to July) in the study area.

Following the trends of the hydrological features, NH4
+-N,

NO3
−-N, NO2

−-N and Cl− concentrations in the upstream varied
more extensively than in the downstream. At site R10 in the
upstream, NH4

+-N and Cl− concentrations increased and NO3
−-N

concentration decreased sharply because of the input water of
the Yongan River (T4), which drained urbanized areas (the city
of Changzhou) and was polluted by domestic sewage and
livestock wastewater with additional high NH4

+-N and Cl−

concentrations (Fig. 3a, b and 3d). The mean concentration of
DO measured at Yongan River was 1.2 mg/L, which was ideal
for denitrification (DO concentration <1 mg/L to 2 mg/L)
(Rivett et al., 2008) and caused the low content of NO3

−-N in
the Yongan River and in R10. In the downstream, NH4

+-N
concentrations decreased slowly, while NO3

− concentrations
increased. The Cl− concentrations had little change.

2.2. Spatial and temporal isotopic composition of NO3
−,

NH4
+ and POM

The isotopic compositions of the NO3
− in the Taige River were

found to range from +4.56‰ to +8.79‰ (n = 45, mean value =
+6.83‰) for δ15N and from −0.24‰ to +8.17‰ (n = 44, mean
value = +3.18‰) for δ18O. The δ15N-NH4

+ and δ15N-POM values
ranged from −0.96‰ to +12.82‰ (n = 45, mean value =
+4.58‰) and from −3.83‰ and +0.66‰ (n = 44, mean
value = −1.46‰), respectively. The δ15N and δ18O-NO3

− values
in winter (mean ± SD = +7.36‰ ± 0.98‰, +4.66‰ ± 1.25‰,
respectively) were higher than those in summer (mean ±
SD = +6.23‰ ± 1.02‰, +1.39‰ ± 1.02‰, respectively) (Fig. 4a
and b). The δ15N-POM values were also higher in winter
(Fig. 4d), but the δ15N-NH4

+ values in winter (mean ± SD =
+2.60‰ ± 1.84‰) were lower than those in summer (mean ±
SD = +6.85‰ ± 2.59‰) (Fig. 4c). The reasons for temporal
variation of isotopic composition are discussed in Section 2.3.

Longitudinal variability in isotopic composition in the
Taige River was significantly controlled by shifting hydrologic
conditions. The isotopic composition of NO3

−, NH4
+ and POM in

the upstream variedmore extensively because of the inputs of
various pollution sources with different isotopic composition
in tributaries in the upstream. The Yongan River (T4), which
was seriously polluted with high NH4

+ and low DO content (see
Section 2.1), had high δ15N and δ18O-NO3

− values (mean ± SD =
+16.21‰ ± 3.81‰, +11.00‰ ± 3.09‰, respectively). The input
of T4 resulted in the increased δ15N and δ18O-NO3

− values at the
site R10 in the Taige River (Fig. 4a and b). At the site R9, the
δ15N-NH4

+ and δ15N-POM values increased sharply and then
decreased (Fig. 4c and d). This was caused by the Xinxilicao
River (T3) input with high δ15N-NH4

+ (mean ± SD = +9.40‰ ±
3.81‰) and δ15N-POM values (mean ± SD = −0.88‰ ± 0.59‰).
In the downstream of the Taige River, the δ15N-NO3

−, δ18O-NO3
−

and δ15N-POM values showed a clear increasing tendency (The
reasons are discussed in Section 2.3) (Fig. 4a, b and d), while
δ15N-NH4

+ values showed no such clear development (Fig. 4c).

2.3. Nitrate source identification determined by
dual-isotopic approach

The following sources possibly contributed to the NO3
− budget

in the Taige River in winter: precipitation, chemical fertilizer,
nitrification of N-containing organic materials, livestock, and
urban sewage effluent. The boxes in Fig. 5 show typical ranges
of δ15N and δ18O for various natural and anthropogenic
sources of NO3

−.
The contribution of NO3

− from precipitation was probably
negligible for the waters of the Taige River considering the low
δ15N-NO3

− (−13‰ to +13‰, close to 0‰) and high δ18O-NO3
−
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values (+25‰ to +75‰) in rain (Wassenaar, 1995; Durka et al.,
1994; Kendall, 1998). In this district, fertilizer N was almost all
in its reduced form, i.e., urea and ammonium, and the NO3

−

form was negligible. Ammonium fertilizer was not directly
distributed into the rivers at the time of sampling because of
its low δ15N-NO3

− values (−6‰ to +6‰). However, the isotopic
composition of NO3

− from chemical fertilizer would be
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indicating that manure, urban sewage effluent, and nitrifica-
tion of N-containing organic matter (including “modified
fertilizer”) were likely the major sources of NO3

− in the Taige
River. These results are in good agreement with those by
Townsend-Small et al. (2007), Chen et al. (2012), and Xing et al.
(2001), who used the NO3

− isotopic method and found that
sewage-derived N makes a dominant contribution to the
rivers to the northwest of Taihu Lake.

The δ15N and δ18O-NO3
− values in the Yongan River (T4) were

located in the “manure and sewage” source box. Thiswas due to
wastewater discharge from many livestock and poultry farms
along the riverside of the Yongan River, and these NO3

− sources
are known to have high δ15N-NO3

− values that can reach +14‰
and sometimes even +20‰ (Heaton, 1986). Furthermore, other
biochemical processes (mostly denitrification) in the Yongan
River could also elevate the δ15N and δ18O-NO3

− values.
Fig. 5 also indicates that the δ15N and δ18O-NO3

− values in
winter were higher than those in summer. In winter, the low
flow and anthropogenic inputs (manure and urban sewage
effluent) resulted in more serious NO3

− pollution in the Taige
River (Fig. 4b). This was supported by NO3

−-N versus Cl−

concentration relationships in the Taige River. Chloride is a
good indicator of sewage impact and dilution because it is not
subject to physical, chemical, and biological processes (Liu et
al., 2006). High Cl− content mainly resulted from domestic
sewage and livestock wastewater. NO3

−-N versus Cl− concen-
trations in river water showed that river water was more
significantly affected by manure and urban sewage effluent,
with higher δ15N and δ18O-NO3

− values in winter than in
summer (Fig. 6). In summer, the δ15N and δ18O-NO3

− values of
the Taige River were close to the low δ15N and δ18O-NO3

− values
of soil organic matter and chemical fertilizer in the study area
(Fig. 5). This indicated that the intensified microbial nitrifica-
tion of the soil organic matter and chemical fertilizer resulted
in low δ15N and δ18O-NO3

− in river water as climate warming
and fertilizing activities took place in summer. Furthermore,
dilution caused by precipitation in the rainy season could also
result in low isotopic composition for NO3

− in river water.

2.4. Assessment of the transformations of nitrogen
in the downstream

According to the distributions of hydrological and water
chemistry features, the mixing process of the three guest
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Fig. 6 – NO3
−-N versus Cl− concentrations in river water. NO3

−-N:
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rivers (Wuyi River, Yongan River, and Xinxilicao River) with
different δ15N and δ18O-NO3

− values caused the distinction
between isotopic compositions in the upstream and the
downstream of the Taige River. To further understand the
biogeochemical N process in the Taige River, the following
analysis focuses on the downstream of the Taige River, which
has only minor variations in hydrological conditions.

During the sampling period, a decrease in NH4
+-N concentra-

tions was observed in the downstream (Fig. 3a). This decrease
could be attributed to ammonia volatilization, nitrification, and
uptake by biota. The δ15N-NH4

+ values in the downstream were
small and could not be interpreted as the result of a 15N
enrichment of residual NH4

+ resulting from volatilization
(Chang et al., 2002; Sebilo et al., 2006). Either microbial
nitrification or NH4

+ assimilation by algae could result in
increased δ15N-NH4

+ values and decreased NH4
+-N concentration.

The negative correlation between δ15N-NH4
+ values and the

natural logarithm of NH4
+-N concentration in the downstream

indicated that nitrification and assimilation probably occurred
simultaneously in the downstream of the Taige River (Fig. 7).

Although NH4
+ assimilation in aquatic algae occurred (as

discussed below), we believe that nitrification played a more
important role in the decreasing NH4

+-N concentrations. First,
coupledwith the decreasing NH4

+-N concentrations, the NO3
−-N

concentrations increased in the downstream, indicating the
occurrence of nitrification (Fig. 3a, b). Furthermore, in our
study, the N isotopic enrichment factors (ε) during ammoni-
um utilization in the downstream ranged from −13.88‰ in
March to −29.00‰ in July (except in January, when the water
temperature was low and microbial nitrification was restrict-
ed, r2 = 0.09, p > 0.05) (Fig. 7). These factors (ε) were in the
range of the N isotopic enrichment factors (ε) during nitrifi-
cation (−12‰ to −29‰) (Kendall, 1998).

To better understand the nitrogen assimilation in the
Taige River, we analyzed not only the relationship between
δ15N and δ18O of NO3

− but also the relationships between
δ15N-POM and isotopic compositions of DIN.

In addition to the increase in NO3
− δ15N and δ18O values

(Fig. 4a, b), we found a significant correlation between NO3
−

δ15N and δ18O values in the downstream in January (r2 = 0.81,
p < 0.01) and in March (r2 = 0.75, p < 0.01) (Fig. 8). Algae/biota
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generally prefer the uptake of light isotopes of NO3
−, which

would lead to enrichment with heavy isotopes in residual NO3
−

(Battaglin et al., 2001; Johannsen et al., 2008). The ratio of the
increase in δ18O and δ15N of river NO3

− in the downstream was
1.04 in January and 0.92 in March, which were closer to the
~1:1 increase reported for NO3

− assimilation of marine
phytoplankton (Granger et al., 2004) than to the 1:1.3 or the
1:2.1 increase reported for denitrification in freshwaters
(Böttcher et al., 1990; Kendall, 1998; Mengis et al., 1999; Burns
et al., 2009; Kaushal et al., 2011). The results indicated that
NO3

− assimilation by phytoplankton was responsible for the
increasing δ15N and δ18O values of NO3

− in winter.
In the study area, many laboratory and field studies have

indicated that the dominant N source responsible for the
growth of phytoplankton was NH4

+ (McCarthy et al., 2007; Paerl
et al., 2011; Zhou et al., 2013). Our study demonstrates that the
presence of POM in the Taige River was mainly derived from
aquatic phytoplankton without terrigenous organic matter
playing a role (Fig. 9). Thus, the relationships between
δ15N-POM and isotopic compositions of DIN could help us to
understand the nitrogen assimilation. Fig. 10a shows two
positive linear correlations existing between δ15N-POM and
δ15N-NO3

− values in winter, which supported NO3
− assimilation
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Fig. 9 – Relationships between (a) δ13C-POM and C/N and (b) δ15N-
the potential sources of organic material.
Adapted from Hamilton and Lewis (1992), Angradi (1994), Thorp
(2008), and Tang and Zhang (2010).
by phytoplankton in winter, as discussed before using NO3
−

δ15N and δ18O values. Three other positive linear correlations
were found between δ15N-POM and δ15N-NH4

+ values from
March to July (Fig. 10b), which indicated that NH4

+ assimilation
in aquatic algae occurred and was partly responsible for the
decreasing NH4

+-N concentrations. Therefore, we concluded
that the phytoplankton in the Taige River probably utilized
NH4

+ preferentially and mainly in summer, while in winter,
NO3

− assimilation by phytoplankton was dominant. The
results were supported by a laboratory study and field
monitoring in Taihu Lake conducted by Zhou et al. (2013).
They found Microcystis always assimilated NH4

+ preferentially,
but when NH4

+-N concentration exceeded 2 mg/L, their growth
rate declined sharply. In our study, NH4

+-N concentrations of
the Taige River were above 2 mg/L in winter and were below
2 mg/L in summer (Fig. 3a), which could partly explain the
assimilation of different nitrogen forms in winter and in
summer. Further systematic study should be performed to
clearly understand N cycling in the area.
3. Conclusions

In our study of the Taige River, we found the river was polluted
more seriously by anthropogenic inputs in winter than in
summer, based on DIN concentrations. Manure and urban
sewage effluent, as well as the nitrification of N-containing
organic materials, were the major sources of N. Efforts to reduce
N exported from livestock waste, urban wastewater and soil
should be a priority. In the downstream of the Taige River,
nitrification and assimilation probably occurred simultaneously.
Nitrification played a more important role than assimilation in
the decreasing NH4

+-N concentrations. Nitrification strengthened
as the water temperature increased. Based on the data of the
isotopic composition of DIN and POM, we also found that the
phytoplankton in the Taige River probably utilized NH4

+ prefer-
entially andmainly in summer,while inwinter,NO3

−assimilation
by phytoplankton was dominant. Our study demonstrates that
the dual-isotope approach (δ15N and δ18O of NO3

−), combinedwith
analyses of NH4

+ and POM isotopic compositions, is a helpful tool
in investigating sources of NO3

− and N transformation processes
along rivers in the plain river network region.
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