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Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America and
successfully adapted to diverse environmental conditions. It offers the potential to reduce
soil surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information
on how these CO2 fluxes respond to changing climate is still lacking. In this study, CO2

fluxes were monitored continuously from 2011 through 2014 using high frequency
measurements from Switchgrass land seeded in 2008 on an experimental site that has
been previously used for soybean (Glycine max L.) in South Dakota, USA. DAYCENT, a
process-based model, was used to simulate CO2 fluxes. An improved methodology CPTE
[Combining Parameter estimation (PEST) with “Trial and Error” method] was used to
calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO2

emissions based on different climate change scenarios. This study showed that: (i) the
measured soil CO2 fluxes from Switchgrass land were higher for 2012 which was a drought
year, and these fluxes when simulated using DAYCENT for long-term (2015–2070) provided
a pattern of polynomial curve; (ii) the simulated CO2 fluxes provided different patterns with
temperature and precipitation changes in a long-term, (iii) the future CO2 fluxes from
Switchgrass land under different changing climate scenarios were not significantly
different, therefore, it can be concluded that Switchgrass grown for longer durations
could reduce changes in CO2 fluxes from soil as a result of temperature and precipitation
changes to some extent.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
Keywords:
Carbon dioxide
Switchgrass
DAYCENT
Climate change
Introduction

Switchgrass is a perennial C4 grass, native to North America and
successfully adapted to diverse environmental conditions over
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large geographic regions (Lewandowski et al., 2003). It was first
identified as a renewable energy sourceby theU.S. Department of
Energy in 1985. This perennial grass can be used for livestock
forage, soil stabilization, and wildlife cover. Further, Switchgrass
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can be adapted tomarginal lands, and tolerates soilwater deficits
and low soil nutrient concentrations. Therefore, Switchgrass has
been extensively evaluated for further development over the last
twodecades (Parrish and Fike, 2005;Wright, 2007). The currentUS
average Switchgrass yield was projected to double or even triple
by 2025 (McLaughlin et al., 2006). However, information regarding
growing Switchgrass on marginal lands in the North Central
region of USA and how it responds to climate change when
grown in a recently converted cropland is lacking.

Mitigation of carbon dioxide (CO2) emissions to the atmo-
sphere is a key to solve the problem of global warming. It has
beenwell documented in the literature that perennial crops emit
less CO2 emissions than corn (Zeamays L.) or soybean (Adler et al.,
2007). Therefore, it can be beneficial economically and environ-
mentally to plant Switchgrass on marginally yielding cropland
areas over the long-term in order to mitigate the climate change
impacts. However, it is very difficult to monitor climate change
impacts associated with CO2 fluxes. Furthermore, monitoring
these CO2 fluxes across the region fromall possible combinations
of environmental and soil conditions is very difficult (De Gryze et
al., 2010). Therefore, process-based ecosystemmodels provide an
option to simulate CO2 emissions that canaccount for all possible
permutations of management and climate in the region.

DAYCENT model (Parton et al., 1998), the daily version of
the CENTURY (Parton, 1996; Parton et al., 1987), was selected
in this study. It is a fully resolved ecosystemmodel simulating
major ecosystem processes such as changes in soil organic
matter, plant productivity, nutrient cycling (i.e., N, P, and S),
CO2 respiration, soil water, and soil temperature (De Gryze et
al., 2010). However, performance of this model strongly
depends on how well it is calibrated and validated for the
specific environmental conditions being evaluated (De Gryze
et al., 2010; Smith et al., 1997). Therefore, calibration of these
models is very important in order to assess long-term
scenarios. Methods of calibrating DAYCENT used in previous
studies (Chamberlain et al., 2011; Davis et al., 2010) were “trial
and error” method, which is a good method but limited
because it cannot obtain the best-fit values of parameters.
This is a manual way of calibrating the model, as opposed to
the use of statistical inverse modeling where measured data
is used as input into the models to provide estimates of
model parameters according to mathematical and statistical
theories. The PEST (Parameter ESTimation) model (Doherty,
2010), a method of statistical inverse modeling, was chosen to
calibrate the DAYCENT model in this study. The purpose of
the PEST is to assist in data interpretation, model calibration
and predictive analysis. The first statistical inverse modeling
for calibrating the DAYCENT model using PEST was reported
by Rafique et al. (2013). However, the method's disadvantage
is that some parameter functions and impacts in DAYCENT
may be changed by PEST. For example, according to the
Instruction of DAYCENT, most parameters in fix.100 file of
DAYCENT cannot be adjusted (some parameters could be
adjusted with very small ranges). However, in the study by
Rafique et al. (2013), some of these parameters were calibrated
by PEST. This may result in biased simulations. To overcome
the weaknesses of using either “trial and error” or inverse
modelingmethod alone formodel calibration, we proposed an
improvedmethodology, i.e., combination of trial and error and
inverse modeling using PEST called CPTE, which was
described in our previous study (Mbonimpa et al., 2015a). In
this study, the methodology has been first used for DAYCENT
calibration, and to simulate climate change impacts on soil
CO2 fluxes.

Therefore, specific objectives of the present study were to:
(i) improve the method of calibration to enhance the
simulation of DAYCENT model and (ii) analyze the future
long-term impacts of temperature and precipitation changes
on soil surface CO2 fluxes from Switchgrass land recently
converted from cropland in South Dakota.
1. Materials and methods

1.1. Data measurements and sources

The research site was located near Bristol (45° 16′ 8.274″ N, 97°
50′ 8.9694″ W), South Dakota, USA. It was arranged into 12
plots measuring 21.3 m wide and 365.8 m long and comprised
of three landscape positions: shoulder, backslope and
footslope. Three N treatments (low, 0 kg N/ha; medium,
56 kg N/ha; and high, 112 kg N/ha) were applied annually
during spring beginning in 2009. Switchgrass was planted on
May 17, 2008 on land previously used for soybean production.
A detailed description of the study site can be found in
Mbonimpa et al. (2015b).

In this study, soil surface CO2 fluxes were measured using
a LI-8100 instrument (Automated Soil CO2 Flux System) from
plot number 103 which received the high N fertilizer rate and
was located at the shoulder position. Soil CO2 fluxes were
monitored at 2-hr intervals for four years (2011, May 6 to
November 1; 2012, April 4 to November 1; 2013, May 20 to
November 13; and 2014, May 6 to October 26). The measured
CO2 flux data were converted to daily average values which
include a total of 736 daily values, in which 85 were removed
because the LI-8100 instrumentation misread and/or there
were sudden and large unexplainable changes. Soil tempera-
ture and volumetric soil moisture content at 5-cm depth were
measured with the soil temperature and moisture probes
included with the LI-8100.

The daily maximum and minimum air temperature data for
2011 to 2013 were measured using a temperature sensor
connected to the LI-8100 instrumentation at the research site.
The precipitation data for 2011 through 2013 was measured at
the study site. The daily maximum and minimum air temper-
ature and precipitation from 1956 to 2010 and 2014 were
retrieved from the nearest weather station in Webster, SD
(25 km), in which precipitation from 2001 to 2010 and 2014were
retrieved from the nearestweather station inBristol, SD (10 km).
The soil bulk density and pH data were 1.37 Mg/m3 and 8.09,
respectively. The particle size distribution was 225 g/kg clay,
377 g/kg silt, and 398 g/kg sand.

1.2. Model performance evaluation and statistical analysis

The model performance was evaluated with five widely used
quantitative criteria (Dai et al., 2014; Moriasi et al., 2007) that
include the coefficient of determination (R2, squared correla-
tion coefficient), model performance efficiency (ME) (Nash
and Sutcliffe, 1970), percent bias (PBIAS) (Gupta et al., 1999),
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and the RSR [the ratio of the root mean square error (RMSE) to
SD (standard deviation of measured data)] (Singh et al., 2004).
The R2 is the most important criteria to compare default
simulation with that of calibrated simulation or validated
simulation, and its acceptable range is >0.50 (Santhi et al.,
2001). The ME is the key variable used to evaluate the model
performance. If ME >0.50, the performance is acceptable
prediction. If ME is greater than 0.65 and less than 0.75, the
performance is good. If ME >0.75, the model performance is
very good (Moriasi et al., 2007). The third important criterion is
RMSE-observations standard deviation ratio (RSR). Its range of
satisfactory rating values is less than 0.70 (Moriasi et al., 2007).
For the PBIAS, if its absolute value is less than 25% and greater
than 15%, the performance is satisfactory, and
10% < |PBIAS| < 15% for good performance and |PBIAS| < 10%
for very good (Moriasi et al., 2007). The lower the absolute
value of PBIAS, the better the performance. Further, paired
simulated soil CO2 fluxes between different climate scenarios
were compared using the Parallel-line method because these
data were time correlated values as well as each pair values
were not independent. The 0.05 of significance level of the
statistical hypothesis test was used. The distributions of the
datasets were tested for normality using Kolmogorov–
Smirnov test. The data analyses were performed using SAS
9.3 (SAS, 2012).

1.3. DAYCENT model calibration and validation

The DAYCENT model stand-alone version DailyDayCent 08/
17/2014 was used for simulating soil surface CO2 fluxes in this
study. The model inputs include daily precipitation and
maximum and minimum temperature, soil texture, bulk
density, pH, and historical land use and field and crop
management. In this study, “trial and error” method was
first used to calibrate DAYCENT model. In the DAYCENT
model, there are 87 parameters that can be adjusted for
simulating CO2, and for this study, a total of 29 from 87 were
selected based on previous literature and recommendation
from model developers. The parameter values were reset on
the basis of the available information for the experimental
site. Then, the model was calibrated manually by adjusting
values of the important parameters until the adjusted
parameters improve the simulations of CO2 fluxes. Through
comparing the predicted CO2 fluxes with those of measured
values, the R2 of 0.46, ME of 0.27, RSR of 0.85, and PBIAS of
−18.02%was obtained. These valueswere out of their acceptable
ranges. Therefore, PEST model was used to calibrate further the
manually calibrated DAYCENT model (called “PEST calibrated
model”). Combined PEST and DAYCENT models (called “PEST
calibration” or “PEST calibrated model”) were run for calibration
using themost sensitive parameters (n = 44) andmeasured CO2

flux data from 2011 to 2013. The calibrated modeled CO2 fluxes
(“PEST-MOD”) were extracted from the outputs of the PEST
calibrated model, and then PEST-MOD vs. measured CO2 fluxes
(“MEAS”) were compared based on four statistical criteria which
showed an improved calibration and prediction of CO2 fluxes.

Validation of the calibrated DAYCENT was performed using
(i) measured CO2 fluxes in 2014, (ii)measured Switchgrass yields
from 2009 to 2011, which were used to check the net primary
productivity (NPP) that themodel is predicting for this study site
[It is noted that if the NPP for the site is not correct, then none of
the other model outputs can be expected to be representative of
the conditions at the site (Parton et al., 1998)], and (iii) soil
temperature and soil moisture data measured from 2011 to
2013.

1.4. Simulating and analyzing future soil surface CO2 fluxes

The PEST calibrated DAYCENT model was used to simulate
CO2 fluxes for long-term duration (2015 to 2070) based on
future climate change scenarios, and then these simulated
CO2 fluxes were compared using Parallel-line method and
Line charts. The future climate scenarios were created based
on the method of incremental scenarios development
(McCarthy, 2001). Each includes three variables: dailyminimum
(Tmin(°C)) and maximum temperature (Tmax(°C)) and precipita-
tion (Prcp (cm)) from 2015 to 2070 based on the format of input
for theDAYCENTmodel. The historicweather data from1959 to
2014 were used for the observed time series to create the
climate change scenarios. Based on the distribution of the
observed time series (Fig. S1A), the maximum temperature
followed a slightly decreased trend from 1959 to 2014 (Fig. S1A),
which was stationary over time. Therefore, the maximum
temperature for all scenarios was expected to increase by
0.5°C from 2015 to 2070 (total 56 years). The average increase of
annual maximum temperature is 0.5/56°C. Then, Tmax in
2015 = Tmax in 1959 + 1 × 0.5/56°C, Tmax in 2016 = Tmax in
1960 + 2 × 0.5 / 56°C, Tmax in 2017 = Tmax in 1961 + 3×0.5/56°C,
… , Tmax in 2070 = Tmax in 2014 + 56 × 0.5/56°C. For the
minimum temperature, there was an increase of 2.38°C from
1959 to 2014 (Fig. S1A), which is non-stationary over time,
therefore, the futureminimumtemperature for the 2015 to 2070
period could be possibly different increased trend as compared
to that of 2015 to 2070 period. The increase range was expected
1°C through 3°C basedon the fact of increase of 2.38°C from1959
to 2014 and the range reported by IPCC which suggested
increase in temperature roughly between 0.4°C and 2.6°C by
2060 relative to 1990 (IPCC, 2007). Within the range of 1 through
3°C, we set ten scenarios that include the minimum tempera-
ture values were increased by 1°C, 1.25°C, 1.5°C, 1.75°C, 2°C,
2.25°C, 2.38°C, 2.5°C, 2.75°C, and 3°C from 2015 to 2070.
Therefore, themagnitude of the futureminimum temperatures
of ten scenarios is 2.38°C + ten different increases from 2015 to
2070 + the observed Tmin from 1959 to 2014, respectively. For
example, for the scenario 5, its minimum temperature is
increased by 2°C from 2015 to 2070, its daily minimum
temperature in 2015 = 2.38°C + Tmin in 1959 − 1 × (2.38 −
2°C) / 56, the daily Tmin in 2016 = 2.38°C + Tmin in 1960 −
2 × (2.38 − 2°C) / 56, the daily Tmin in 2017 = 2.38°C + Tmin in
1961 − 3 × (2.38 − 2°C) / 56, … , the daily Tmin in 2070 =
2.38°C + Tmin in 2014 − 56 × (2.38 − 2°C) / 56. Based on the
same algorithm, Tmin in other nine scenarios were calculated.
Thus, the ten scenarios of temperature changes were created
while Prcp was kept constant. They were named as x1, x2, …,
x10, in which x7 is corresponding to +2.38°C (the amount of
increase of observed minimum temperature from 1959 to 2014)
and was regarded as Temperature Business As Usual (T-BAU).

The 13 scenarios of precipitation change were also created.
Changes in precipitation from y1 to y13 are corresponding to −
30%, −25%, −20%, −15%, −10%, −5%, 0, +5%, +10%, +15%,
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+20%, +25%, and +30% of the precipitation measured for 1959
to 2014. The frequencies of precipitation for future climate
scenarios were kept same to that of 1959 to 2014. However,
the range is based on that reported by IPCC's projected
precipitation to be approximately between -30% to 30% across
the globe by 2090 relative to 1990 (IPCC, 2007). The y7 is the
scenario with 0% of precipitation and was regarded as
Precipitation Business As Usual (P-BAU).
2. Results

2.1. Measured CO2 fluxes and DAYCENT calibration and
validation

Soil surface CO2 fluxes from Switchgrass land varied season-
ally and yearly (Fig. 1A). The higher fluxes were observed in
the summer of 2012. The CO2 data monitored from 2011
through 2013 were used for DAYCENT model calibration to
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tivity values from PEST output. Out of 87 parameters, 44 were
identified to be the most sensitive to simulate soil CO2 fluxes.
These parameters were ranked in descending order based on
the scaled sensitivity values presented in Supplementary data
of Table 1 (i.e., Table S1 in Supplementary data in Appendix A).
The parameters prbmn(1_1), epnfs(2), sfavail(1), biomax, and
pramn(1_1) in the DAYCENT model were observed to be the
most sensitive. The prbmn (1_1) is the intercept parameter for
computing minimum C/N ratio for below ground matter as a
linear function of annual precipitation. Epnfs (2) is intercept
value for determining the effect of annual evapotranspiration
non-symbiotic soil N fixation. Sfavail (1) is species specific
fraction of N available to grass/crop. Biomax is biomass level
above which the minimum and maximum C/E ratios of the
new shoot increments equal pramn (*, 2) and pramx (*,2)
respectively. Pramn (1_1) is minimum C/N ratio with zero
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Table 1 – Evaluation criteria for comparing soil surface CO2 fluxes, soil temperature, and soil moisture between measured
andmodeled data usingmanually calibrated DAYCENT (Manual) and PEST calibrated DAYCENT (PEST) model for calibration
and validation.

Evaluation criteria †

Calibration Validation

CO2 (g/(m2·day)) CO2 (g/(m2·day)) Soil temperature
(°C)

Soil moisture
(cm3/cm3)

Manual PEST Manual PEST Manual PEST Manual PEST

R2 ([0.5,1)) 0.46 0.65 0.52 0.63 0.86 0.86 0.60 0.62
ME ([0.5, 1)) 0.27 0.56 0.31 0.40 0.49 0.41 −4.76 −5.41
RSR ([0.7, 0)) 0.85 0.66 0.83 0.78 0.71 0.76 2.40 2.53
PBIAS ([25%, 0)) −18.02 −10.28 −13.92 −7.88 8.36 9.78 −33.81 −36.09

† R2 = coefficient of determination; ME = model performance efficiency; RSR = the ratio of the root mean squared error to standard deviation of
measured data; and PBIAS = percent bias.
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biomass. Other 39 parameters were descripted in Table S1.
Then values of the 44 parameters were adjusted for DAYCENT
calibration until the adjusted parameters improve the simu-
lations of CO2 fluxes.

The data in Fig. 1A showed that the simulated CO2 fluxes
using the manual and DAYCENT-PEST calibration were ob-
served similar trends with those of the measured fluxes. The
data reported in Fig. 1A showed an agreement betweenmodeled
and measured soil CO2 fluxes except for few unaligned peaks.
The PEST calibrated DAYCENT (DAYCENT-PEST) provided the
best prediction for CO2 fluxes compared tomanual calibration of
DAYCENT. Data in Table 1 showed the evaluation criteria of
model performance for calibration and validation periods for
modeling CO2 fluxes. The coefficient of determination (R2) value
of 0.65 of the PEST calibrated DAYCENT model indicated that
there was a strong linear relationship between the PEST
calibrated and measured CO2 fluxes, whereas, R2 of the manual
calibrated model was 0.46 (Table 1). The percent bias (PBIAS)
value of 10.28%was good for the PEST calibratedmodel, whereas,
it was −18.02% for the manual model. Both the R2 and the PBIAS
values of the PEST calibrated DAYCENT model indicated that
there was not only a strong linear relationship but there was also
a very close magnitude between the DAYCENT-PEST calibrated
model andmeasuredCO2 fluxes.Also,modeling efficiency (ME) of
0.56 of PEST calibrated model was in the acceptable range,
whereas theME value of 0.27 of themanualmodel was out of the
range. Further, the RSR (ratio of RMSE to standard deviation (SD)
of measured CO2 fluxes) value of 0.66 for the PEST calibrated
modelwas reasonably good for themodel performance,whereas,
themanually calibratedmodelhadaRSRvalueof 0.85,whichwas
out of the range of satisfactory values (<0.70). These results
indicated that our final results of calibration of DAYCENT are
good.

For validation, the simulated andmeasured CO2 fluxes had
similar trends and closer magnitude (Fig. 1B). The R2, ME, RSR,
and PBIAS values of the PEST calibrated model vs. the
manually calibrated model for the validation period were
0.63 vs. 0.52, 0.40 vs. 0.31, 0.76 vs. 0.83, and −7.88% vs. −13.92,
respectively. These values of R2 and PBIAS for DAYCENT-PEST
model were within satisfactory rating values compared to
those of manually calibrated model (Table 1). The PEST vs.
manually calibrated models simulated the soil temperature
reasonably well with values for R2, ME, RSR, and PBIAS of 0.86
vs. 0.86, 0.41 vs. 0.49, 0.76 vs. 0.71, and 9.78% vs. 8.36%. These
values for simulating the soil moisture were 0.62 vs. 0.60,
−5.41 vs. −4.76, 2.53 vs. 2.40, and −36.09% vs. −33.81%,
respectively. Results in Fig. 2a, b showed that the simulated
soil temperature data matched closely to the measured
temperature. Further, modeled soil moisture content provided
similar trend with the measured soil moisture but had
different magnitude. For Switchgrass yield validation for the
PEST calibrated model vs. the manually calibrated model,
simulated yields of Switchgrass from 2009 to 2011 closely
resembled the measured yields based on their PBIAS values of
−1.98% vs. 0.84%, −5.19% vs. −2.50%, and −2.81% vs. 3.72%
(Table 2). In general, the PEST calibrated DAYCENT model
providedmore satisfactory validation based on the above results,
and hence was used for all the long-term climate scenarios.

2.2. CO2 fluxes forecasts using BAU weather data

The PEST calibrated DAYCENT model along with the BAU
weather data was used to simulate soil CO2 from 2011 to 2070.
The simulated annual CO2 fluxes fromSwitchgrass landprovided
a trend of polynomial curve from 2015 to 2070 (Fig. 3a). The curve
function is: y = −0.0064x3 + 0.4709x2 − 2.9065x + 422.21, where y
is the annual CO2 fluxes, x is year from 2015 to 2070. The
simulated annual average value of CO2 fluxes from2015 to 2070 is
554.84 (g/(m2 year)) with standard deviation of 103.68 and 95%
confidence interval [527.07, 582.61].

2.3. Simulating the impacts of changing temperature scenarios
on CO2 fluxes

The PEST calibrated DAYCENT model was used to simulate
yearly CO2 fluxes from 2011 to 2070 based on different
temperature scenarios, and then these fluxes were compared
with the simulated CO2 fluxes using BAU (note: the calcula-
tions of BAUweather data were described in the Materials and
methods section) (Table S2). Soil CO2 fluxes were not
significantly affected by temperature increase from 1°C to
3°C in long-term (2015–2070) (Table 3). However, the annual
means of simulated CO2 fluxes provided a trend of slightly
linear increase with the minimum temperature increases
from 1°C to 3°C (Table 3 and Fig. 4).

The CO2 fluxes under wet, dry and BAU were provided a
trend of polynomial curves (Fig. 3b). The magnitude of fluxes
under these three scenarios was narrower from 2015 to 2048.
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However, the trend and magnitude of CO2 fluxes for the dry
conditionwas different from those ofwet and BAUbeyond 2049.
These fluctuations were wider under dry conditions than that
under P-BAU and wet conditions. In contrast, CO2 fluxes had a
similar trendwith those of BAU but themagnitude of fluxeswas
lower (Fig. 3b).

Fig. 4 shows the simulated yearlymeanCO2 fluxes (g/m2/year)
corresponding to ten temperature scenarios under P-BAU, wet
(+30% precipitation), and dry conditions (−30% precipitation).
Underwet and P-BAU condition, the CO2 fluxes increased slightly
with the increase of temperature, whereas, these fluxes had an
observable increased trend under dry conditionwith the increase
of temperature (Fig. 4). The CO2 fluxes under wet condition were
less than those of dry conditions and P-BAU (Fig. 4). The soil CO2

fluxes from Switchgrass land in January, February, March, and
December were very low, whereas, these fluxes were the highest
Table 2 – Comparison of modeled and measured
Switchgrass yield (g/(m2·year)) for validation.

Year Measured
DAYCENT-PEST DAYCENT

Modeled PBIAS (%) Modeled PBIAS (%)

2009 303.88 297.87 −1.98 300.37 0.84
2010 566.69 537.30 −5.19 523.87 −2.50
2011 545.21 529.89 −2.81 549.61 3.72
in July. The mean CO2 fluxes under wet condition from May to
Octoberwere less than that under P-BAUanddrought conditions,
whichwere of similar trends andmagnitudes (Fig. S2). The trends
of monthly soil CO2 fluxes were of similar trends of monthly
temperature and precipitation (Fig. S2 and S4). Further, rates of
monthly soil CO2 fluxes based on scenarios of temperature
changes were compared under P-BAU, wet, and drought condi-
tions (Table S4). Comparing to the P-BAU and dry condition
during the growing season from April to November, monthly
rates of CO2 fluxes under wet condition were negative and the
rates in June and October were the highest. However, monthly
rates of CO2 fluxes under drought condition had different
magnitudes of these rates, and lower than that under wet and
P-BAU conditions (Table S4).

2.4. Simulating the impacts of changing precipitation scenarios
on CO2 fluxes

The precipitation increase from +20% to +30% significantly
impacted CO2 fluxes compared to those from P-BAU (p < 0.05),
however, precipitation changes from −30% to +15% did not
impact soil CO2 fluxes (p > 0.05) (Table 4).

The mean CO2 fluxes with 1°C increase in temperature
were slightly lower than those under temperature with BAU
(T-BAU) condition (Fig. 5). However, a precipitation increase
along with a 1°C increase in temperature resulted in slightly
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elevated soil CO2 fluxes (Fig. 6). Under T-BAU and +1°C
condition, the CO2 fluxes had similar trends with a 2-degree
polynomial curve. The data also showed that with the increase
in precipitation from −30% to +30%P, the CO2 fluxes increased
initially with decreased precipitation, peaked at an optimal
precipitation, and then decreased to the lowest point under wet
condition or increased precipitation (30%P) (Fig. 6). For the T-BAU
trend, the maximum CO2 fluxes were observed with −15%P and
the trend function was given by: y = −295.14x2 − 78.277x + 539,
Table 3 – Statistical results of comparing simulated future
soil CO2 fluxes (g/(m2·year)) based on different
temperature scenarios.

CO2 fluxes — temperature changes

Var a Mean ± SD L95%CI U95%CI p-Valueb

x1 533.19 ± 115.33 503.40 562.98 x1/x7:0.63 –
x2 533.00 ± 115.33 503.21 562.80 x2/x7:0.62 x2/x1:0.99
x3 532.51 ± 115.26 502.74 562.29 x3/x7:0.59 x3/x2:0.96
x4 535.61 ± 117.44 505.27 565.94 x4/x7:0.81 x4/x3:0.77
x5 536.21 ± 117.16 505.94 566.47 x5/x7:0.85 x5/x4:0.95
x6 536.99 ± 117.81 506.56 567.43 x6/x7:0.91 x6/x5:0.94
x7 538.15 ± 118.28 507.60 568.71 – x7/x6:0.91
x8 538.48 ± 118.50 507.87 569.09 x8/x7:0.97 x8/x7:0.89
x9 540.50 ± 119.34 509.67 571.33 x9/x7:0.82 x9/x8:0.85
x10 540.97 ± 119.72 510.04 571.90 x10/x7:0.79 x10/x9:0.96

a x1 = +1°C; x2 = +1.25°C; x3 = +1.5°C; x4 = +1.75°C; x5 = +2°C; x6 =
+2.25°C; x7 = +2.38°C; x8 = +2.5°C; x9 = +2.75°C; x10 = +3°C.
b p-Values were from output of Parallel-line analysis.
whereas, the maximum CO2 fluxes with the +1°C temperature
were observed with −5%P, and the trend function was given by:
y = −309.7x2 − 52.764x + 531.59 (Fig. 6). The soil CO2 fluxes from
Switchgrass land in January, February, March, and December
were very low,whereas, these fluxeswere thehighest in July. The
mean CO2 fluxes under T-BAU fromMay to October were slightly
greater than that under +1°C condition (Fig. S3). The trends of the
monthly soil CO2 fluxes were of similar trends of monthly
temperature and precipitation (Figs. S3 and S4). Further, rates of
monthly soil CO2 fluxes based on scenarios of precipitation
changeswere compared under T-BAU and +1°C conditions. All of
12 monthly rates of CO2 fluxes under T-BAU condition were
positive, in which November has the biggest rate of 4.06% and
June has the least rate of 0.39% (Table S4).
3. Discussion

Our previous study at this site concluded that climate
impacted the soil surface CO2 fluxes (Mbonimpa et al.,
2015b). However, to assess the potential climate change
impacts on these fluxes in long-term was still a researchable
question. This study showed that the CO2 fluxes from
Switchgrass land provided increased trends from 2011 to
2070 using a range of different climate scenarios (Fig. 3a, b,
and Fig. 5). These trends, however, were not a linear increase
with the years but rather a polynomial. The latter trend
resulted from interactions of the multiple factors that were
influenced by climate. The temperature and precipitation
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directly determine level of soil temperature and moisture,
respectively, which are the most important abiotic parame-
ters determining CO2 fluxes and its underlying processes
(Kutsch et al., 2009; Subke and Bahn, 2010). Further, the future
56 years forecasting of CO2 fluxes were predicted with 95%
confidence interval for mean based on different climate
scenarios (Table S2). These findings can be useful in develop-
ing greenhouse gas mitigation strategies.

Results from this study also showed that annual CO2 fluxes
were not significantly different for all the temperature scenarios
(Table 3). These fluxes slightly increased with the increase in
temperature (Fig. 4). Similarly, CO2 fluxes with 13 precipitation
scenarios were also not significantly different except for three
scenarios (+20%, +25%, and +30%P), which resulted in lower CO2

fluxes (Table 4 and Fig. 6). These data indicated that impacts of
long-term temperature and precipitation changes on respiration
of CO2 under local conditions were not significant. It has been
Table 4 – Statistical results of comparing simulated future
soil CO2 fluxes (g/(m2·year)) based on different
precipitation scenarios.

CO2 fluxes — precipitation changes

Var a Mean ± SD L95%CI U95%CI p-Valueb

y1 533.30 ± 133.60 498.79 567.82 y1/y7:0.53 –
y2 538.97 ± 134.66 504.18 573.75 y2/y7:0.86 y2/y1:0.65
y3 545.53 ± 139.66 509.45 581.61 y3/y7:0.78 y3/y2:0.65
y4 547.12 ± 136.34 511.90 582.34 y4/y7:0.64 y4/y3:0.85
y5 544.42 ± 130.76 510.64 578.20 y5/y7:0.75 y5/y4:0.88
y6 543.38 ± 125.84 510.87 575.88 y6/y7:0.75 y6/y5:0.99
y7 538.15 ± 118.28 507.60 568.71 – y7/y6:0.75
y8 534.12 ± 113.73 504.74 563.50 y8/y7:0.78 y8/y7:0.78
y9 526.26 ± 106.28 498.80 553.71 y9/y7:0.4 y9/y8:0.58
y10 519.39 ± 100.53 493.42 545.36 y10/y7:0.18 y10/y9:0.62
y11 509.93 ± 96.56 484.98 534.87 y11/y7:0.039 y11/y10:0.44
y12 499.73 ± 93.36 475.61 523.85 y12/y7:0.004 y12/y11:0.40
y13 492.48 ± 89.24 469.42 515.53 y13/y7<0.001 y13/y12:0.56

a y1 = −30%P; y2 = −25%P; y3 = −20%P; y4 = −15%P; y5 = −10%P;
y6 = −5%P; y7 = 0%P; y8 = 5%P; y9 = 10%P; y10 = 15%P; y11 =
20%P; y12 = 25%P; y13 = 30%P.
b p-Values were from output of Parallel-line analysis.
reported invarious studies thatperennial grassland improves soil
carbon sequestration and emit less emissions from soils. This
may be one of reasonswhy long-term climate change impacts on
CO2 fluxes can beminimal on Switchgrass land. However, further
long-term research is needed to support this statement.

Soil CO2 fluxes under simulated drought conditions (−30%P)
exhibitedwider fluctuations in the long-term (2011–2070) (Fig. 3b).
Some studies have shown that soilmoisture affects CO2 fluxes by
its direct influence on root and microbial activities, and indirect
influences on soil physical and chemical properties (Raich and
Schlesinger, 1992; Schimel and Clein, 1996). Drought conditions
reduce soil respiration and wetter conditions increase CO2

production (Jensen et al., 2003; Mbonimpa et al., 2015b). The
heterotrophic respiration is more susceptible to drought than
autotrophic respiration (Scott-Denton et al., 2006; Zhou et al.,
2007). Thus, a wide range of fluctuations in CO2 fluxes under
drought condition were observed compared to those under
P-BAU (Fig. 3b). Furthermore, the CO2 fluxes exhibited the slopes
of increased trendwith increasing temperature from 1°C through
3°C. These slopes were lower under P-BAU and wet condition
compared to that with dry condition (Fig. 4). This may be due to
the fact that Switchgrass performs better under soil water
deficits. The present study site is located under the humid
continental climate which is still appropriate for Switchgrass to
grow well even if the precipitation amount were reduced by 30%
compared to the P-BAU. Furthermore, the cultivar of Switchgrass
for the study site was developed for local conditions. The
improved Switchgrass growth could increase the respiration
of CO2 with temperature under dry conditions compared to that
under wet conditions. However, under wet conditions, higher
water content in soils decreased air-filled porosity, increased
stomatal resistance and hence decreased CO2 respiration
(Kirkham, 2011).

These results also indicated that when temperature is kept
constant, both dry and wet conditions could decrease CO2

emissions (Fig. 6). Some studies have shown that there is a
negative effect of elevated soil temperature on soil moisture
due to increased evapotranspiration (Liu et al., 2009; Poll et al.,
2013; Shaver et al., 2000). Additionally, it is not necessarily
true that precipitation always increases moisture content
of the soils probably because most precipitation events were
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unlikely to rewet the soil to a greater depth (Poll et al., 2013).
The reduction in soil moisture by soil warming was shown
to reduce microbial respiration in a dry semiarid temperate
steppe (Liu et al., 2009). This inconsistency between soil
moisture and soil respiration is probably due to the above
mentioned inability of precipitation events to rewet the dry soil
to a depth of 15 cm (Poll et al., 2013), especially, at the shoulder
position as is the case in our research site. Under moisture
excess or waterlogged conditions, there were anaerobic condi-
tions and suppression of CO2 emissions (Liu et al., 2002).
Furthermore, higher water content in soils is a condition
attributed to reduced transpiration due to increased stomatal
resistance (Kirkham, 2011). These conditions could result in lack
of oxygen in soil organic matter, which subsequently decreases
respiration. Therefore, the CO2 fluxes were lower in wet
conditions compared to dry and BAU.

Soil surface CO2 fluxes were higher with the T-BAU
(+2.38°C) compared to that with +1°C condition (Fig. 6). This
was primarily because temperature increased CO2 emissions
with increased soil organic matter decomposition. Further,
precipitation amount contributing to the maximum CO2 flux
under T-BAU was lower than that under +1°C condition (Fig. 6).
This might be explained by higher temperature values that can
reduce soil moisture content through the evaporation process
and increasing decomposition of organic compounds in aerobic
R2 = 0.9891
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Fig. 6 – Trends of simulated average annual CO2 fluxes from 201
under temperature of BAU (increase of 2.38°C) and increase of 1°
soils. Further, the humid continental climate at the study site
could result in the maximum CO2 fluxes under the reduced
precipitation conditions, indicating that properly managed
Switchgrass in the present site has the potential to mitigate CO2

fluxes. Data from this study showed that increased precipitation
with increased temperature produced higher CO2 fluxes. These
findings were also supported by other researchers who reported
that the main driving factors affecting belowground soil respira-
tion were temperature, precipitation or temperature in combi-
nation with precipitation (Do, 2008). The interactions of soil
temperature and moisture determine soil respiration in most
ecosystems (Kanerva et al., 2007; Li et al., 2006). Regression
analysis showed that soil moisture positively affected the
correlation between soil temperature and soil respiration and
explained 25%of the variation inQ10 values (Poll et al., 2013). The
increase in CO2 fluxes under higher temperature condition may
be explained by increased plant biomass in general and
subsequent increases in C flow to the soil with increase of
temperature and precipitation (Kanerva et al., 2007).
4. Conclusions

Soil surface CO2 fluxes are strongly influenced by climate,
however, evaluating impacts of different climate scenarios on
% 10% 20% 30% 40%
itation (cm)

764x2 + 531.59

R2 = 0.9875
y = -295.14x3 - 78.277x2 + 539

1 to 2070 based on precipitation changes from -30% to +30%
C with changing precipitation. BAU: Business As Usual.
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these fluxes in long-term is difficult without modeling tools.
Our previous study that included measured CO2 data for 3 years
showed that climate significantly impacted the CO2 fluxes.
Therefore, this study was conducted to assess the long-term
impacts of climate on CO2 fluxes from Switchgrass land recently
converted from cropland. DAYCENT model was used for
assessing the climate change scenarios. The calibration of this
model was improved using a new (CPTE) methodology that
combines the “trial and error” and PEST model to reduce the
biasness of model predictions. The four data (CO2 fluxes of 2014,
Switchgrassyield from2009 to2011, andsoil temperatureandsoil
moisture from 2011 to 2013) were used for validating the model.
Then the calibrated and validated DAYCENT model was used to
simulate and analyze future CO2 fluxes.

This study concluded that measured soil CO2 fluxes were
higher for 2012 which was a drought year, and these fluxes
when simulated for long-term (2015–2070) provided an
increased pattern of polynomial curve. Soil surface CO2 fluxes
from Switchgrass land showed an increasing trend from 2011
to 2070 with a polynomial curve. The distribution patterns of
temperature and precipitation were more important for soil
CO2 efflux seasonal dynamics. Our simulation results showed
that the future CO2 emissions from Switchgrass land in South
Dakota would generally be insignificantly different with
changes in temperature and precipitation, therefore, Switch-
grass grown for longer durations could reduce changes in CO2

fluxes from soil as a result of temperature and precipitation
changes within the ranges of the climate scenarios to some
extent. However, to assess the climate change impacts based on
just one parameter was not sufficient, therefore, the future work
should include a systematical analysis of different parameters
such as greenhouse gas (GHG) fluxes, soil organic carbon, total
nitrogen and other crops and soil data from Switchgrass land.
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