

Dissolved nitrous oxide and emission relating to denitrification across the Poyang Lake aquatic continuum

Huaxin Wang^{1,3,**}, Lu Zhang^{2,**}, Xiaolong Yao², Bin Xue², Weijin Yan^{1,2,*}

1. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China Email: wanghx.13b@igsnrr.ac.cn

2. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

3. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Article history: Received 18 January 2016 Revised 15 March 2016 Accepted 31 March 2016 Available online 30 April 2016

Keywords: Nitrous oxide gas Nitrogen Dinitrogen gas Denitrification Natural wetlands Poyang Lake

ABSTRACT

Most aquatic ecosystems contribute elevated N₂O to atmosphere due to increasing anthropogenic nitrogen loading. To further understand the spatial heterogeneity along an aquatic continuum from the upriver to wetland to lake to downriver, the study was conducted on spatial variations in N₂O emission along Poyang Lake aquatic continuum during the flood season from 15 July 2013 to 10 August 2013. The results showed the N₂O concentrations, the ratio of N₂O/dinitrogen (N₂) gases production, N₂O emission and denitrification rates ranged from 0.10 to 1.11 µg N/L, -0.007% to 0.051%, -9.73 to 127 µg N/m²/hr and 1.33 × 10⁴ to 31.9 × 10⁴ µg N₂/m²/hr, respectively, across the continuum. The average N₂O concentrations, the ratio of N₂O/N₂ and N₂O emission was significantly lower in wetlands as compared to the rivers and lake (p < 0.01). The significantly high denitrification rate and low N₂O emission together highlighted that most N₂O can be converted into N₂ via near complete denitrification in the Poyang Lake wetlands. Our study suggests that the wetlands might impact N₂O budget in an integrated aquatic ecosystems. Moreover, N₂O emission from different aquatic ecosystem should be considered separately when quantifying the regional budget in aquatic ecosystem.

© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Introduction

The Intergovernmental Panel on Climate Change (IPCC, 2007) reported that N_2O is a key greenhouse gas, potentially having an even greater impact on global warming than CO_2 . The atmospheric concentrations of N_2O are increasing at approximately 0.25% per year, being responsible for approximately

5% to 10% of global warming (IPCC, 2007). Human activities have altered nitrogen cycles, causing a transfer of nitrogen inputs from terrestrial ecosystems to aquatic ecosystems leading to a cascade from underground water through rivers, lakes, estuaries and coastal seas (Hinshaw and Dahlgren, 2013). The impacts of this on N_2O emission, potentially impacting global warming, are poorly understood. Thus, it is

** These authors contributed equally to field observation, lab analysis and writing this article.

http://dx.doi.org/10.1016/j.jes.2016.03.021 1001-0742/© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

^{*} Corresponding author. Email: yanwj@igsnrr.ac.cn (Weijin Yan).

important to quantify FN₂O and its influence factors from aquatic systems for both global budget studies and national ga

emission inventories. Previous studies reported that N₂O emission was controlled by three aspects in aquatic ecosystem, including nitrogen level, denitrification rate and hydrological condition. Based on a long time series records, relationship was estimated between the NO₃ concentration and N₂O production in the coastal upwelling area of Chile (Farias et al., 2015). Musenze et al. (2014) also found that N₂O saturation increase with the nitrogen level. In addition, the microbial denitrification might alter aquatic ecosystem as a source or sink for N₂O under different environmental conditions (Beaulieu et al., 2014; Hou et al., 2015). A study demonstrated that high degree of N₂O reduction during denitrification cause a freshwater riparian fen acting as a sink for N₂O (Blicher-Mathiesen and Hoffmann, 1999). Controls of the hydrological condition on N₂O emission has been discussed recently (Marzadri et al., 2014). The slope, water depth and water velocity had influence on the gas-exchange velocity and N₂O emission (Wang et al., 2015).

Natural wetlands, and in particularly seasonally inundated wetlands located in a river system, can play an important role in regulating N₂O emissions. IPCC (2007) reported that tropical wetlands are considered significant natural sources of N₂O. Many reports in the literature found anthropogenic nitrogen input delivered from terrestrial to wetland may increase N2O emission in the wetland (Morse et al., 2012; Morse and Bernhardt, 2013; Moseman-Valtierra et al., 2011; Palta et al., 2013; Paludan and Blicher-Mathiesen, 1996). However, a study by Audet et al. (2014) showed that especially under $NO_3^$ limitation, N₂O emission was low or negative in the wetland because of consumption of N2O during denitrification and nitrification. Wang et al. (2009) investigated N₂O emission in Taihu Lake and found that algal blooms correspond to high N₂O emission, while the macrophyte correspond to low N₂O emission.

Until now, most studies documented N₂O emission from individual freshwater ecosystem. In China, several studies have been performed on the N₂O emission from rivers (Yan et al., 2012), lakes (Wang et al., 2009; Zhong et al., 2010) and reservoirs (Liu et al., 2011). However, few studies have characterized an integrated aquatic system, spanning the upriver to wetlands to lake to downriver. N₂O and N₂ are incomplete and complete product of denitrification process, respectively. Most studies focused on the N₂O only (Allen et al., 2007; Beaulieu et al., 2010), and there is a limited understanding of the mechanism of N₂O production and emission. N₂O yield (ratio of N₂O to N₂ production) could reflect the relative rates of N₂O production and consumption. Thus, determination of dissolved N₂ and N₂O concentration in aquatic ecosystem contributes to further study of N₂O emission.

As the largest shallow lake in China, the Poyang Lake water system is one of seven aquatic systems in the Changjiang River Basin. Due to the significant fluctuation of seasonal water level in the Poyang Lake, abundant natural wetlands are formed with an area of approximately 2787 km² (Hu, 2010). The Poyang Lake and its wetlands are well preserved and slightly polluted. N₂O emission of this area is not well-documented (Liu and Xu, 2016; Liu et al., 2013). It is essential to understand the role of Poyang Lake and its wetlands in influencing the regional N₂O emission budget.

Here, we reported a study on dinitrogen (N₂) and N₂O gases production and emission. Using a Membrane Inlet Mass Spectrometry (MIMS) system and gas chromatography, we directly measured dissolved N2 and N2O concentrations (C_{N2 dis} and C_{N2O dis}, respectively) in natural wetlands. Measures also included their adjacent aquatic ecosystems along a flow gradient from upriver to natural wetlands to lake to the downriver continuum of the Poyang Lake water system. The measurements were taken during the 2013 flood season (Fig. 1). Our study had three principal objectives. First, to analyze the spatial variability and diurnal patterns of dissolved N₂ and N₂O concentrations denitrification rate and N₂O emission. Second, to determine the spatial variations in the N₂O yield and the relationship between denitrification and N2O production in wetlands, rivers and lake, respectively. Third, to identify influence factors on the N_2O production and emission in the aquatic continuum.

1. Materials and methods

1.1. Study area

The Poyang Lake is a subtropics lake, which located in the Jiangxi Province, south of the Changjiang River of China. The mean annual air temperature and precipitation was 17.1°C and about 1500 mm, respectively (Liu et al., 2013). Most precipitation of the year occurs from April to September, especially in July and August. In general, the area of the wetlands is large during this period. Our study was conducted in Poyang Lake during the 2013 flood season. Sample collection occurred over 25 days (from 15 July 2013 to 10 August 2013). The study area spanned the upriver-wetlands–Poyang Lake–downriver aquatic continuum, with the Changjiang River Datong hydrological station serving as the administrative center (Fig. 1).

In this study, three fluvial wetlands of the Poyang Lake were selected based on their wetland-vegetation structure and the water level. Of these wetlands, one wetland is located in the national wetlands protection zone at Nanjishan, and the other two wetlands are located in the national wetlands protection zone at Wucheng (Fig. 1). The Nanjishan and Wucheng wetlands are the two largest natural wetlands in the Poyang Lake region. The Nanjishan wetland (N 28°52'21"-29°06′46″, E 116°10′24″-116°23′50″), which is South of Poyang Lake, is a typical river fluvial wetland that is fed by the middle and southern branches of the Ganjiang River and the Fuhe River. The Wucheng wetland (N 29°05'-29°15', E 115°55'-116°03') is located on the river-mouth delta of west branch of the Ganjiang River and the Xiushui River. Based on the wetlandvegetation composition, the selected wetlands fell into four categories (Nanjishan 1 category; Wucheng 3 categories). The first category covered a third of the Nanjishan wetland and was comprised of emergent macrophyte vegetation with Phragmites australis and Triarrhera lutarioriparia L. Liu being the dominant species. The second category was a wetland transition zone in the Wucheng wetland that accounted for one fifth of the area and was comprised of sparse emergent macrophyte vegetation with Carex tristachya being the dominant species. The third category was an open water zone in the Wucheng wetland consisting of small floating and submerged plant structures

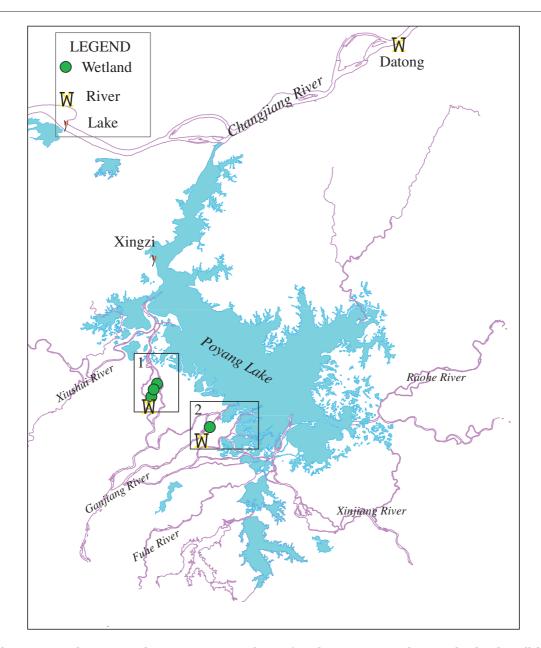


Fig. 1 – Study area across the Poyang Lake water system continuum (1 and 2 represent Wucheng wetland and Nanjishan wetland, respectively. Three circles in 1 represent WE, WI and WO in Wucheng wetland, respectively, and one circle in 2 represent WN in Nanjishan wetland).

with the dominant species of Vallisneria natans and Trapa bispinosa Roxb. The fourth category occurred in the Wucheng wetland and was dominated by dense *Carex tristachya*. The flooding depth, months of flooding, rainfall and the wind speed of each wetland is presented in Table 1.

1.2. Sampling sites design

As shown in Fig. 1, samples were collected at 25 sites spanning the entire water flow gradient continuum (upriver-wetlands-Poyang Lake-downriver) as follows: two sites are located in uprivers (UR) to the lake, where one site at the middle branch of Ganjiang River, and another one at the west branch of Ganjiang River; 9 sites were located in the Nanjishan wetland (WN); 4 sites were located in the Wucheng eulittoral wetland (WE), 3 sites are located in the Wucheng wetland in the infralittoral zone (WI), 3 of the sites were located in the Wucheng wetland with open water (WO), 4 of the sites were located in the Poyang Lake (PL); and 1 site was located at the Datong Hydrological Station (DR) on the Changjiang River. The sampling sites were distributed along both the middle branch (UR–WN–PL–DR, see Fig. 2A) and west branch (UR–WE–WI–WO–PL–DR, see Fig. 2B) of the Ganjiang River, respectively. During the non-flooding seasons, the range of water depths in the Wucheng wetland (WE, WI and WO) was greater than that in Nanjishan wetland (Fig. 2 and Table 1).

For characterizing diurnal variations of N_2O along the aquatic system gradient, 5 sites were selected in UR (the

Table 1 - Physiochemical characteristics of the studied areas across upriver-wetland- lake-downriver aquatic continuum (mean ± standard deviation). $Rainfall^{B}$ NO₃N+NO₂N Sampling Water Water Wind speed $NH_4^+ - N$ pН Flood Flood depth^A (m) location* depth temperature time (mm) (m/sec) (mg N/L) (mg N/L) (°C) (m) UR 1.5-2.5 30.0-31.5 (31.0) ^a 0.4-6.0 1.24–1.49 (1.29)^a 0.04–0.18(0.12)^a 6.40–6.93 (6.66) (15.4 ± 1.73) (113 ± 108) Apr-Aug 26.0–34.8 (28.3) ^b 0.4–2.1 (1.13) 0.83-1.45 (1.09) ^a 0.10-0.30(0.18) ^a 7.11-7.6 (7.32) DR 18-22 0.5–1.1 29.8 ~ 33.7(31.4) ^a 0.3–6.0 $0.02-0.14(0.05)^{b}$ $0.03-0.10(0.06)^{b}$ 5.49-6.35(5.92) (15.4 ± 1.73) WN Apr-Sep (113 ± 108) 1.0-1.7 28.1-31.7 (29.6) ^a 1.5-3.6 $0.004-0.06(0.02)^{\circ}$ $0.03-0.07(0.04)^{\circ}$ $5.69-7.21(6.42)(15.5 \pm 0.93)$ W/F Apr-Sep (133 ± 71) WI 1.5-2.0 28.1-31.7 (29.5) a 1.75-2.6 (2.31) 0.02-0.06 (0.03) c 0.05-0.19(0.09) a 5.69-7.15 (6.23) (15.5 ± 0.93) Apr-Sep (133 ± 71) 1.8-3.5 29.4-30.0 (29.8) a 4.83-7.02 (6.19) 0.02-0.06 (0.03) c 0.04-0.06 (0.05) b 6.12-7.21 (6.75) (15.5 ± 0.93) WO Apr-Sep (133 ± 71) 0.23-0.93 (0.56) ^d 0.04-0.21(0.13) ^a 6.56-8.45 (7.50) (12.1 ± 2.89) 2.8-8.4 28.2-31.3 (29.8) ^a 0.1-3.6 (1.38) PI. May-Aug (101 \pm 92) *UR: upriver, DR: downriver, WN: Nanjishan wetland, WE: Wucheng wetland with eulittoral zone, WI: Wucheng wetland with infralittoral zone, WO:

*UR: upriver, DR: downriver, WN: Nanjishan wetland, WE: Wucheng wetland with eulittoral zone, WI: Wucheng wetland with infralittoral zone, WO: Wucheng wetland with open water, and PL: the Poyang Lake. A and B are obtained from Poyang Lake Wetland Research Station. Data in parenthesis indicates average value among sampling site. Values in the same column with different superscripts within each group differ significantly (p < 0.05).

middle branch), WN, WI, PL and DR, respectively. For each site, samples were taken every 4 for 24 hr period for one time.

For all sampling sites, NO_3^- , NH_4^+ , dissolved organic carbon (DOC), dissolved oxygen (DO), N₂O concentration, pH, water temperature and wind speed were measured.

1.3. Sample collection

The dissolved N_2O and N_2 within water column from all 25 sites (including 4 and 6 groups in the middle and west branch, respectively) were sampled and measured spanning the entire water flow gradient continuum. During each sampling session, surface (0.5 m) water samples were collected, and the water flow rate, water and air temperature, wind speed and DO were measured in situ. Samples for N₂O analysis were collected by filling 60-mL glass serum bottles from the sampler. Samples for dissolved N₂ measurements were collected using 100-mL glass digests. Samples were preserved by adding 0.5 mL of saturated ZnCl₂ solution to each bottle immediately to stop microbial activity before sealing. A surface water sample was collected in a 100-mL glass bottle to determine the NO_3^- and NH_4^+ concentrations. For DOC concentration measurement, an additional water sample was collected in a 100-mL glass bottle and filtered immediately through precombusted (450°C) 0.7 µm glass fiber filters (Whatman, GF/F) to determine DOC concentrations. Samples were transported to the lab on ice for further analysis. Water temperature and DO were measured using a portable meter (YSI 550A) pre-calibrated for DO using an iodometric method in the lab. All samples were collected in triplicates.

1.4. Analytical methods

 $\rm N_2O$ were measured using a Gas Chromatography equipped with an Electron Capture Detector (GC-ECD) on a Shimadzu GC-2014 gas chromatograph (Japan) according to the headspace-equilibrium method (Huttunen et al., 2002). Specifically, 10-mL of highly purified $\rm N_2$ (purity >99.999%) was injected into the sampling bottle using an airtight syringe, displacing a 10-mL water sample. The bottles were then shaken vigorously for 10 min and equilibrated for 4 hr. A 5-mL air sample was then taken for $\rm N_2O$ analysis, and the gas chromatograph was calibrated using a standard air sample. DOC concentration was

measured using a total organic carbon analyzer (TOC-VCPH, Shimadzu, Japan). For both NO_3^- and NH_4^+ concentrations water samples were filtered through 0.45- μ m membranes and then subjected to analysis in a Flow Injection Analyzer (FIA-3100, Titan, China).

Dissolved N_2 in river water were determined using a Membrane Inlet Mass Spectrometry (MIMS) system (HPR40, Hiden Analytical, UK). Dissolved N_2 was measured by the N_2 :Ar method. For details on the analysis and calculation of dissolved N_2 concentrations, see the method described by Yan et al. (2004).

1.5. Calculation

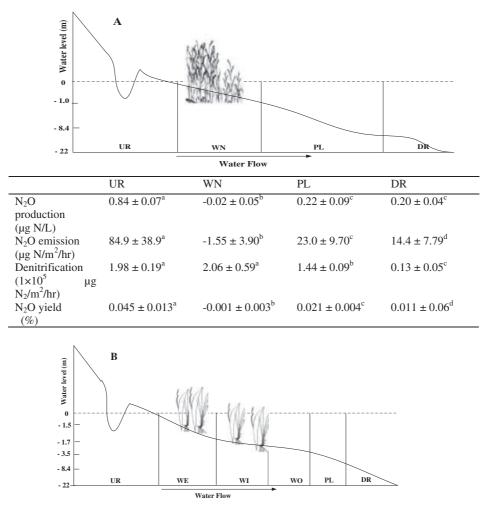
1.5.1. N₂O and N₂ emission

The N₂ and N₂O production (μ g N/L) within water columns are defined as the difference between the measured concentrations (C_{N2Omeas} (μ g N/L), C_{N2meas} (mg N₂/L)), and the atmospheric equilibrium concentrations of river water (C_{N2Oequ} (μ g N/L), C_{N2equ} (mg N₂/L)):

$$N_2 O \ production = C_{N2Omeas} - C_{N2Oequ} \tag{1}$$

$$N_2 production = C_{N2meas} - C_{N2equ}. \tag{2}$$

 N_2O and N_2 emissions (or flux) between the water surface and atmosphere are calculated based on the gas transfer velocity and gas net production (Garnier et al., 2006; Raymond and Cole, 2001):


$$N_2Oemission = N_2Oproduction \times k_{gas}$$
 (3)

$$N_2 emission = N_2 production \times k_{gas}$$
 (4)

where, N₂O emission (μ g N/m²/hr) and N₂ emission (μ g N₂/m²/hr) are the interfacial flux of N₂O and N₂, respectively and k_{gas} (cm/hr) is the gas transfer velocity, calculated by Eq. (5):

$$\mathbf{k}_{\rm gas} = \mathbf{k}_{\rm 600} \times \left(\mathbf{S} \mathbf{c}_{\rm gas} / \mathbf{600} \right)^{-n} \tag{5}$$

where, Sc_{gas} is the Schmidt number for N_2O or N_2 and is calculated according to Wanninkhof (1992) at the in situ

	UR	WE	WI	WO	PL	DR
N ₂ O production (μg N/L)	0.79 ^a	0.02 ± 0.05^{b}	$0.10 \pm 0.05^{\circ}$	0.14 ± 0.07^{d}	$0.22 \pm 0.09^{\text{e}}$	$0.20 \pm 0.04^{\rm f}$
N_2O emission (µg N/m ² /hr)	127 ^a	1.80 ± 8.50^{b}	$8.93 \pm 3.72^{\circ}$	15.2 ± 8.68^{d}	$23.0 \pm 9.70^{\circ}$	14.4 ± 7.79^{d}
Denitrification rate $(1 \times 10^5 \ \mu g$ $N_2/m^2/hr)$	1.52 ^a	2.06 ± 0.06^{b}	1.52 ± 0.27^{a}	1.41 ± 0.07^{a}	1.44 ± 0.09^{a}	$0.13 \pm 0.05^{\circ}$
N ₂ O yield (%)	0.049 ^a	0.001 ± 0.002^{b}	$0.006 \pm 0.003^{\circ}$	0.010 ± 0.002^{d}	0.021 ± 0.004^{e}	$0.11 \pm 0.06^{\rm f}$

Fig. 2 – The profile of sampling sites along upriver (UR, middle tributary of Ganjiang River) — Nanjishan wetland (WN) — lake (PL) — downriver (DR) (A), and the profile of the sampling sites along upriver (UR, west tributary of Ganjiang River) — Wucheng wetland (WE,WI and WO) — lake (PL) — downriver (DR) (B). Dished lines represent the average water depth. Tables showed the spatial variation of N₂O production, N₂O emission, denitrification rate and N₂O production/N₂ production across the sampling sites. Values in the same row with different superscripts within each group differ significantly (p < 0.05) in each table.

(6)

temperature, *n* is the Schmidt number coefficient (2/3 for smooth surfaces, decreasing to 1/2 in the presence of breaking waves), k_{600} is gas (N₂O or N₂) transfer velocity at the Schmidt number of 600 in fresh water, and k_{600} can be calculated by Eq. (6) accounting for both wind speed and water flow rate (Borges et al., 2004):

where, w (m/sec) is the water flow rate, h (m) is the depth of the river water column and μ_{10} (m/sec) is the wind speed at a 10-m height.

The N_2O saturation (concentration relative to that expected under water-atmosphere equilibrium) was calculated by:

(7)

$$k_{600} = 1.0 + 1.719(w/h)^{0.5} + 2.58\mu_{10}$$

 $N_2 O saturation = (C_{N2Omeas}/C_{N2Oequ}) \times 100\%$

where $C_{\rm N2Omeas}$ (µg N/L) is the measured N₂O concentration and $C_{\rm N2Oequ}$ (µg N/L) is the saturation concentration of atmospheric N₂O at the given water temperature (Weiss and Price, 1980).

1.6. Statistical analysis

The data was analyzed using the SPSS 16.0 software package. One-way analysis of variance (ANOVA) combined with the independent-samples t-test was used to test for statistically significant difference between group mean values. Pearson correlation analyses were performed to test the relationships between N₂O emission and environmental factors. Stepwise regression analyze was also used to quantify the relationship between N₂O emission and influence factors. The statistical significance was determined at the 95% confidence level.

2. Results

2.1. Spatial variations of water chemistry across the Poyang Lake wetlands continuum

Water chemistry characteristics across the continuum are provided in Table 1 and Fig. 3. The water temperature and wind speed varied from 26.0 to 34.8°C and 0.1 to 6.0 m/sec, respectively. NO₃ and NO₂, NH⁺₄ concentrations ranged from 0.004 to 1.49 mg N/L and 0.03 to 0.30 mg N/L, respectively. NO_x concentration was significantly higher in rivers and lake than that in wetlands (ANOVA, p < 0.01). The mean water depth was 0.8, 1.4, 1.8 and 2.7 m in WN, WE, WI and WO, respectively. The pH and DO concentration ranged from 5.49 to 8.45 and 0.70 to 8.52 mg/L, respectively. Dissolved inorganic nitrogen (DIN) (NO₂ + NO₃ + NH⁺₄) ranged from 0.04 to 1.55 mg N/L. DIN concentration was significantly higher in

rivers and lake than that in wetlands (ANOVA, p < 0.01). The DOC concentrations averaged (3.02 ± 1.64) mg/L, and it varied greatly among sampling sites, ranging from 1.18 to 7.43 mg/L. DOC concentration was higher in wetlands than that in the rivers and lake (ANOVA, p < 0.01).

2.2. Spatial and diurnal variations of N_2O and N_2 across the Poyang Lake wetlands continuum

The spatial patterns of N₂O concentration, N₂O production and N₂O emission were extremely variable (Fig. 2). They decreased rapidly from UR to WN and then showed an increasing trend from WN to PL, but the N₂O in DR was slightly lower than those in PL. The N₂O concentration, N₂O production and N₂O emission ranged from 0.10 to 1.11 μg N/L, -0.10 to 0.93 μg N/L and -9.73to 127 μg N/m/hr, respectively. The associated mean values for the three forms of N were 0.39 \pm 0.25 μ g N/L, 0.20 \pm 0.25 μ g N/L and 17.5 \pm 30.3 μ g N/m²/hr, respectively. N₂O saturation ranged from 50.4% to 597%. All sampling sites were over saturated with the exception of WN (87% \pm 25%). Together, both N₂O production and N₂O emission were significantly lower in WN than in any of the other sites (ANOVA, p < 0.01 and see Fig. 2A). N₂O emission was almost below the level of detection in WN. For wetlands, N₂O emission was just slightly greater in WE and WI than in WN (Fig. 2). In addition, for rivers and lake, both N_2O production and N₂O emission were significantly lower in PL and DR than those in UR (ANOVA, p < 0.01). Across the Wucheng wetland flow gradient (Fig. 2B), N₂O production was lower in wetlands (WE, WI and WO) than in the other 3 zones (UR, PL, DR) of the flow gradient (ANOVA, p < 0.05). N₂O emission was relatively high in WO, we attribute this to high wind speed that may facilitate N₂O emission.

 N_2O concentration, N_2O production and N_2O emission had no diurnal variability during the 24 hr sampling period at the

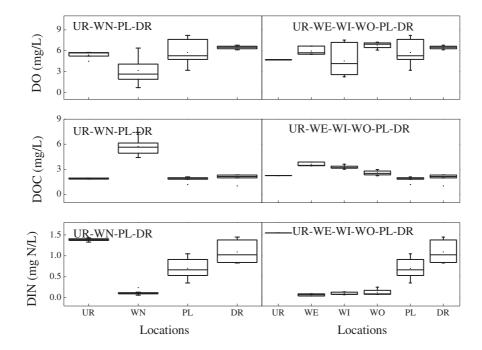


Fig. 3 – Spatial variation of physiochemical characteristics (dissolved oxygen (DO), dissolved organic carbon (DOC) and dissolved inorganic nitrogen (DIN)) across the Poyang Lake aquatic continuum.

5 sites (ANOVA, p > 0.01). Moreover, the diurnal variation of water physiochemical characters (i.e., DO, water temperature, pH and wind speed) could not explain the diurnal variation of N₂O concentration, N₂O production and N₂O emission.

Spatial variabilities in N₂ production and denirtification rate were examined between wetlands and rivers and lake across the continuum (ANOVA, p < 0.01) (Fig. 4). Spatial changes were also observed among the wetlands (ANOVA, p < 0.01). N₂ production and denirtification rate ranged from1.19 to 2.76 mg N₂/L and 1.33 × 10⁴ to 31.9 × 10⁴ µg N₂/m²/hr, respectively. The corresponding average values for the two measures were (1.34 ± 0.77) mg N₂/L and (17.4 × 10⁴ ± 45.6 × 10⁴ µg N₂/m²/hr, respectively, across the continuum. The denirtification rate was highest in WN, while was lowest in DR. Denirtification rate decreased along the water flow from the eulittoral zone to the open water zone in the Wucheng wetland. N₂O emission was negatively correlated with denirtification rate in wetlands (p < 0.05), while was positively correlated with denirtification rate in rivers and lake (p < 0.05) (Fig. 5).

The N₂O yield varied spatially across the Poyang Lake wetlands system (Fig. 2). A relatively high N₂O yield was measured in UR and averaged 0.045% \pm 0.006%. In WN, most N₂O yield values were less than zero and averaged $-0.001\% \pm 0.003\%$. In the Wucheng wetland (WE, WI and WO), the N₂O yield values ranged from -0.002% to 0.014%, with a relatively low mean value of 0.006% \pm 0.005%. Furthermore, the N₂O yield increased along the water flow path gradient from the eulittoral zone to the open water zone in the Wucheng wetland (Fig. 4).

2.3. N_2O production and N_2O emission and the influence factors

Table 2 shows the Pearson correlation between N_2O concentration, N_2O production, N_2O emission and environmental factors.

 NH_4^+ did not correlate with N₂O concentration and N₂O production for river, lake and wetlands, respectively (p > 0.01). The correlation coefficient was high between N₂O concentration

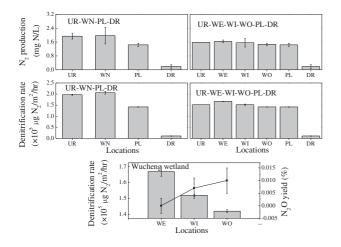


Fig. 4 – Spatial variation of N_2 production, denitrification rate and the ratio of N_2O production/ N_2 production across the Poyang Lake aquatic continuum.

and N₂O production and NO₃ (p < 0.01) in rivers and lake, and was high with DOC concentrations (p < 0.01) in wetlands. N₂O emission was only positively correlated with NO₃ concentrations (p < 0.01) and wind speed (p < 0.05) in rivers and lake. Besides, our results showed N₂O was correlated with increased pH in the wetlands, but with decreased pH in the rivers and lake. The N₂O seems to be more related to the DO in the wetlands.

Stepwise regression analyses were used to test the relationship between N₂O concentration, N₂O production and N₂O emission and environmental factors (Table 3). NO₃⁻ concentration accounted for 80% and 73% of the variance in N₂O production for the continuum, rivers and lake, respectively. pH, water temperature in combination with DO accounted for 62% of the variance in N₂O production for wetlands. N₂O concentration and wind speed accounted for 88% and 97% of the variance in N₂O emission for the continuum, rivers and lake, respectively. N₂O production accounted for 88% of variance in N₂O emission in wetlands.

3. Discussions

3.1. N_2O production, N_2O emission and its influence factors across the Poyang Lake wetlands continuum

The findings of this study suggest that along the wetlands water flow gradient, the N_2O production and N_2O emission decreased from uprivers to wetlands, and that the concentrations were relatively lower in the wetlands than those in the rivers and lake. Rivers and lake were strong sources of atmospheric N_2O , while wetlands were the sink of that.

 N_2O is created in the process of nitrification and denitrification. The $\rm NH_4^+$ concentration was low (averaged: 0.11 \pm 0.30 mg N/L), and the relationship between and N_2O was weak. As a result, nitrification process wasn't dominating the turnover of nitrogen and N_2O production. It was reported that the oxic environments (Wang et al., 2009) and elevated $\rm NH_4^+$ supply (DeSimone et al., 2010) may lead to nitrification resulting in the N_2O production.

 NO_3^- and DOC concentration can regulate denitrification rate and control the production of N₂O and N₂. Previous studies demonstrated that the coupling process of N and C could affect the N cycle in wetlands (Garnier et al., 2010; Wang et al., 2014). In general, incomplete denitrification occurs with limitation of carbon substrate (Israel et al., 2009). $N_2 O$ was generated as the main product in rivers and lake where NO3 concentration was high. The wetlands received large organic carbon inputs from macrophytes, resulting in the complete denitrification, and N_2 is the main product. In addition, $NO_3^$ concentrations were unusually low, and in some water dissolved N₂O concentrations were below the ambient level especially in WN. This indicates that denitrifying consumption of N_2O may have occurred. Low N_2O concentration, N_2O production and N₂O emission but high denitrification rate in the wetlands of Poyang Lake could contribute to the high DOC concentrations. As electron donors of denitrifiers, organic carbon provided energy. Wetland potentially provides optimum conditions for complete denitrification (i.e., available carbon) and subsequently low N₂O emissions.

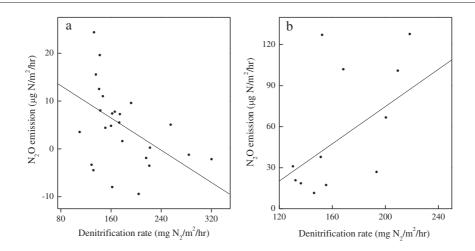


Fig. 5 - Relationship between N₂O emission and denitrification rate in wetlands (a), rivers and lake (b).

Based on our study, NO_3^- and DOC were the most significant variables contributing to N₂O production and emission. However, other factors such as the DO may also have important influences on N₂O production. As an intermediate product of denitrification, N₂O could be produced and reduced simultaneously under oxygen-limited conditions (Minamikawa et al., 2015). Several publications demonstrated a negative relationship between DO and N2O production (Jacobs and Harrison, 2014; Wang et al., 2015). Similarly, we found a weakly negative relationship between DO and N₂O production in rivers and lake. Contrasting this relationship in rivers and lake, this study found a positive relationship between DO and N₂O production in wetlands. DO was particularly low especially in WN and this was most likely related to the decomposition of abundant DOC (Zarnetske et al., 2011). In conditions where DO concentrations are extremely low, such as in WN (DO range: 1-4 mg/L) the product of denitrification was N2 rather than N2O. These low DO findings are in agreement with the published findings of other laboratories, and which most likely reflect, first, that the highest

rates of N_2O production are observed between oxic and anoxic states, and second that the oxygen supply can increase N_2O emission (Burgin and Groffman, 2012; Hernandez and Mitsch, 2006). Therefore, DO has a dual role in regulating N_2O emission, since it could promote or inhibit N_2O emission.

A substantial body of research has documented that river is a source of N₂O with increased nitrogen loading (Venkiteswaran et al., 2014). In our study, N₂O emission was positively correlated with NO₃⁻ and N₂O production and demonstrated the impact of stream nitrogen loading on N₂O emission. In addition, wind speed was positively correlated with N₂O emission in rivers and lake (p < 0.01). Wind speed influenced gas velocity of the air–water interface, and thereby modulated N₂O emission (Musenze et al., 2015). But there was no correlation between wind speed and N₂O emission in wetlands. This could be explained by N₂O concentration in wetlands water column of wetlands being so low that the impact of wind speed on N₂O emission was weak.

Table 2 – Pearson correlation coefficient between N ₂ O and environmental variables.									
	NO_3^-	NH_4^+	DOC	pН	DO	WS	WT	N_2O conc.	N ₂ O pro.
All N2O conc.	0.93**		-0.64**	0.22 ^{ns}	0.21 ^{ns}		-0.07 ^{ns}		
N ₂ O pro.	0.93**		-0.63 **	0.21 ^{ns}	0.21 ^{ns}	o o= *	-0.05 ^{ns}	o oo **	o oo **
N ₂ O emission	0.82**		-0.51**	0.09 ^{ns}	0.15 ^{ns}	0.35*	-0.08 ^{ns}	0.88**	0.88 **
Wetlands N ₂ O conc.	-0.31 ^{ns}	0.02 ^{ns}	-0.68**	0.54**	0.48*		-0.47*		
N ₂ O pro. N ₂ O emission	-0.33 ^{ns} -0.30 ^{ns}	0.02 ^{ns} -0.01 ^{ns}	-0.68 ** -0.64 **	0.56 ^{**} 0.63 ^{**}	0.52 ^{**} 0.52 ^{**}		-0.40 [*] -0.39 [*]	0.94 **	0.94 **
Rivers and lake									
N ₂ O conc.	0.92**	-0.17 ^{ns}	0.33 ^{ns}	-0.70**	-0.30 ^{ns}		0.49*		
N ₂ O	0.92**	-0.17 ^{ns}	0.32 ^{ns}	-0.71**	-0.31 ^{ns}		0.51*		
pro. N ₂ O emission	0.81**	-0.13 ^{ns}	0.41 ^{ns}	-0.59**	-0.22 ^{ns}	0.74**	0.21 ^{ns}	0.84 **	0.84 **

N₂O conc.: N₂O concentration, N₂O pro.: N₂O production, WS: wind speed, WT: water temperature, ns: not significant.

* Significance of *p* < 0.05.

** Significance of *p* < 0.01.

Table 3–Regression analysis b environmental variables.	oetwee	en N	2 ⁰	and		
Best regression formula	R ²	р	F	n		
All						
N_2O conc. = 0.51 NO_3^- + 0.21	0.80	0.000	121	45		
N_2O conc. = -0.10 DOC + 0.71	0.41	0.000	20	32		
N_2O emission = 0.51 NO_3^- + 0.024	0.80	0.000	122	45		
N_2O pro. = -0.10 DOC + 0.52	0.40	0.000	20	32		
N ₂ O emission = 107 N ₂ O conc 21.43	0.86	0.000	188	45		
N ₂ O emission = 107 N ₂ O conc. + 3.21 WS – 28.6	0.88	0.000	109	45		
N_2O emission = -9.09 DOC + 49.3	0.26	0.003	10	32		
Wetlands						
N_2O conc. = -0.04 DOC + 0.41	0.47	0.000	18	23		
N_2O conc. = 0.16 pH - 0.41 WT + 0.02 DO + 1.28	0.64	0.000	13	27		
N_2O conc. = -0.04 WT + 0.03 DO + 1.40	0.64	0.000	20	27		
N_2O pro. = -0.04 DOC + 0.21	0.46	0.000	18	23		
N ₂ O pro. = 0.02 pH - 0.04 WT + 0.02 DO + 0.92	0.62	0.000	12	27		
N_2O pro. = -0.04 WT + 0.03 DO + 1.05	0.61	0.000	18	27		
N ₂ O emission = 87.0 N ₂ O pro. + 1.09	0.88	0.000	158	27		
N_2O emission = -3.40 DOC + 19.5	0.41	0.001	14	23		
N_2O emission = 10.7 pH - 2.43 WT + 12.4	0.56	0.000	15	27		
Rivers and lake						
N_2O conc. = 0.80 NO_3^- + 0.09	0.74	0.003	20	18		
N_2O conc. = -0.26 pH - 2.50	0.49	0.001	15	18		
$N_2O \text{ pro.} = 0.80 NO_3^ 0.28$	0.73	0.003	19	18		
N_2O pro. = -0.27 pH + 2.34	0.50	0.001	15	18		
N_2O emission = 135 N_2O conc. – 44	0.79	0.001	27	18		
N_2O emission = 105 N_2O conc. + 17.0 WS - 50	8 0.97	0.000	106	18		
N_2O emission = 120 NO_3^- - 68	0.66	0.000	31	18		
N_2O emission = -32 pH + 273	0.35	0.009	8.7	7 18		
$N_2 O$ conc.: $N_2 O$ concentration, $N_2 O$ pro.: $N_2 O$ production, WS: wind						

speed, WT: water temperature.

3.2. The relationship between denitrification and N_2O emission across the Poyang Lake aquatic continuum

N₂O emission was positively related to the denitrification rate in rivers and lake, while N_2O emission was negatively related to the denitrification rate in wetlands. The products of denitrification included N₂ and N₂O, where N₂ was the end product of denitrification and N₂O was the intermediate product (Beaulieu et al., 2014; Chen et al., 2014b). The composition of denitrification products, described as the ratio of N₂O production/N₂ production, can reflect (nitrate reduction degree) the nitrogen removal and N₂O emission (low ratio means complete nitrate reduction, while high ratio means incomplete reduction). And this ratio is defined as the N₂O yield (Beaulieu et al., 2011; Silvennoinen et al., 2008). A low N₂O yield existed with a relatively high denitrification rate in the wetlands. Compared with N_2O yield of 53 streams across the USA, which range from 0.05% to 5.6% (Beaulieu et al., 2011), the N_2O yield in wetlands (mean value: 0.003% ±0.005%) of Poyang Lake was extremely low. Abundant DOC in wetlands can provide energy and anaerobic condition for denitrification processes that further stimulated N_2O conversion into N_2 and that resulted in low N_2O yield in wetlands. Previous studies have documented that under some conditions, the reduction of N₂O to N₂ is favored during denitrification in wetland (Audet et al., 2014; Knowles, 1982; Koegel-Knabner et al., 2010).

A negative value for N₂O emission in WN, suggested that WN was a sink for N₂O. Furthermore, the relatively low N₂O emission in the Wucheng wetland implied that there existed low production and emission of N₂O. Low N₂O emission and high denitrification rate suggested that wetlands could remove DIN and reduce N₂O emission *via* complete denitrification.

3.3. N₂O emission in other aquatic ecosystems in the literature

Compared to reports about other aquatic ecosystems (Table 4), Yan et al. (2012) reported N₂O emission (1.87–40.8 μ g N/m²/hr) in lower reach of the Changjiang River, and this was much higher than that in wetlands of our study. With relatively low nitrate concentrations, the N₂O emission level in the uprivers of this study were far away lower than that in the South Platte river (McMahon and Dennehy, 1999), where enriched DIN (0.25-22 mg N/L) was derived from waste water and agricultural irrigation water. Both NO₃ concentrations and N₂O production in this study were lower than those documented by Chen et al. (2014a), but N₂O emission was relatively high. These disparities between our findings and those of Chen et al. may be explained by the high wind speed (average: 2.62 m/sec, 1.61 m/sec, Chen et al., 2014a) in this study. N₂O emission were much lower in the wetlands of the Poyang Lake than that of a wetland in Denmark, which is located in an agricultural area and enriched in NO_3^- (Paludan and Blicher-Mathiesen, 1996).

4. Conclusions

Significantly spatial variations of N₂O concentration, N₂O production and N₂O emission were observed across the Poyang Lake water flow gradient. Relatively low N₂O concentration (0.10–0.40 μg N/L) and N₂O emission (–9.37–24.4 μg N/m²/hr) was observed in wetlands. In addition, our study also demonstrated N₂O concentration, N₂O production and N₂O emission increased along the gradient from the eulittoral zone to the open water zone in the Wucheng wetland. The diurnal study suggested no significant differences in N₂O concentration and N₂O emission over the consecutive 24 hr periods. Diurnal fluctuations in N₂O in different aquatic ecosystem require further study.

Factors governing the variability of N₂O concentration, N₂O production and N₂O emission were identified. In the rivers and lake, the N₂O concentration, N₂O production and N₂O emission levels were correlated with the NO₃ concentration. But in wetlands, they were correlated with the DOC and DO concentration. Stepwise regression analyses demonstrated the NO₃ explained 73% of the N₂O production variance in rivers and lake. In wetlands, N₂O production variance could be explained by pH, DO and water temperature. N₂O concentration and wind speed together could explain 97% of the N₂O emission variance in rives and lake. In wetlands, N₂O emission could be predicted by N₂O production.

A high denitrification rate and low or negative value of N_2O emission in the Poyang Lake wetlands suggested that the well preserved wetlands may be the sink for N_2O in the Poyang Lake or may reduce the transfer of N_2O emission to the atmosphere due to the near complete denitrification. We suggested that

Table 4 – N_2O emission in rivers and wetlands in the literature.								
	Name	Observed date	N ₂ O emission (μg N/m²/hr)	Method	Reference			
River River	JiuLong Jiang (China) South platte river (USA)	2010–2011 Fall, winter and summer from 1994 to 1995	0.67–9.94 3.75–1358	Modeled K Chamber	(Chen et al., 2014a) (McMahon and Dennehy, 1999)			
River	The Changjiang River (China)	August 2012	1.87-40.8	Modeled K	(Yan et al., 2012)			
River	Spring-fed LII river (New Zealand)		52-140/13-52	Chamber/modeled K	(Clough et al., 2007)			
Wetland	Lamprey River	From January 2005 to October 2006	0.6	Chamber	(Flint and McDowell, 2015)			
Wetland	Prairie pothole wetland (Canadia)	2004–2005	2.08–11.7	Chamber	(Badiou et al., 2011)			
Wetland	Wetlands (Denmark)	From July 1993 to June 1994	5.88–263	Chamber	(Paludan and Blicher-Mathiesen, 1996)			
Wetland	Coastal plain wetland (USA)	From July 2007 to June 2009	-0.01-1.59	Chamber	(Morse et al., 2012)			

when quantifying the regional N_2O emission budget in an integrated aquatic ecosystem, N_2O emission from river, lake and wetlands should be considered separately.

Acknowledgments

This study was supported by the Research Program of State Key Laboratory of Lake Science and Environment (No. 2012SKL012), CAS Key Project (No. KJZD-EW-TZ-G10), and the National Basic Research Program (973) of China (No. 2012CB417005). We are grateful for the Poyang Lake Wetland Integrated Research Station for their help on field study.

REFERENCES

- Allen, D.E., Dalal, R.C., Rennenberg, H., Meyer, R.L., Reeves, S., Schmidt, S., 2007. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biol. Biochem. 39, 622–631.
- Audet, J., Hoffmann, C.C., Andersen, P.M., Baattrup-Pedersen, A., Johansen, J.R., Larsen, S.E., et al., 2014. Nitrous oxide fluxes in undisturbed riparian wetlands located in agricultural catchments: emission, uptake and controlling factors. Soil Biol. Biochem. 68, 291–299.
- Badiou, P., McDougal, R., Pennock, D., Clark, B., 2011. Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetl. Ecol. Manag. 19, 237–256.

Beaulieu, J.J., Shuster, W.D., Rebholz, J.A., 2010. Nitrous oxide emissions from a large, impounded river: the Ohio River. Environ. Sci. Technol. 44, 7527–7533.

- Beaulieu, J.J., Smolenski, R.L., Nietch, C.T., Townsend-Small, A., Elovitz, M.S., Schubauer-Berigan, J.P., 2014. Denitrification alternates between a source and sink of nitrous oxide in the hypolimnion of a thermally stratified reservoir. Limnol. Oceanogr. 59, 495–506.
- Beaulieu, J.J., Tank, J.L., Hamilton, S.K., Wollheim, W.M., Hall Jr., R.O., Mulholland, P.J., et al., 2011. Nitrous oxide emission from denitrification in stream and river networks. Proc. Natl. Acad. Sci. U. S. A. 108, 214–219.
- Blicher-Mathiesen, G., Hoffmann, C.C., 1999. Denitrification as a sink for dissolved nitrous oxide in a freshwater riparian fen. J. Environ. Qual. 28, 257–262.

- Borges, A.V., Vanderborght, J.P., Schiettecatte, L.S., Gazeau, F., Ferron-Smith, S., Delille, B., et al., 2004. Variability of the gas transfer velocity of CO_2 in a macrotidal estuary (the Scheldt). Estuaries 27, 593–603.
- Burgin, A.J., Groffman, P.M., 2012. Soil O-2 controls denitrification rates and N₂O yield in a riparian wetland. J. Geophys. Res. Biogeosci. 117.
- Chen, N.W., Chen, Z.H., Wu, Y.Q., Hu, A.Y., 2014a. Understanding gaseous nitrogen removal through direct measurement of dissolved N-2 and N_2O in a subtropical river-reservoir system. Ecol. Eng. 70, 56–67.
- Chen, N.W., Wu, J.Z., Chen, Z.H., Lu, T., Wang, L.J., 2014b. Spatial-temporal variation of dissolved N-2 and denitrification in an agricultural river network, southeast China. Agric. Ecosyst. Environ. 189, 1–10.
- Clough, T.J., Buckthought, L.E., Kelliher, F.M., Sherlock, R.R., 2007. Diurnal fluctuations of dissolved nitrous oxide (N₂O) concentrations and estimates of N₂O emissions from a spring-fed river: implications for IPCC methodology. Glob. Chang. Biol. 13, 1016–1027.
- DeSimone, J., Macrae, M.L., Bourbonniere, R.A., 2010. Spatial variability in surface N_2O fluxes across a riparian zone and relationships with soil environmental conditions and nutrient supply. Agric. Ecosyst. Environ. 138, 1–9.
- Farias, L., Besoain, V., Garcia-Loyola, S., 2015. Presence of nitrous oxide hotspots in the coastal upwelling area off central Chile: an analysis of temporal variability based on ten years of a biogeochemical time series. Environ. Res. Lett. 10, 13.
- Flint, S.A., McDowell, W.H., 2015. Effects of headwater wetlands on dissolved nitrogen and dissolved organic carbon concentrations in a suburban New Hampshire watershed. Freshwat. Sci. 34, 456–471.
- Garnier, J., Cebron, A., Tallec, G., Billen, G., Sebilo, M., Martinez, A., 2006. Nitrogen behaviour and nitrous oxide emission in the tidal Seine River estuary (France) as influenced by human activities in the upstream watershed. Biogeochemistry 77, 305–326.
- Garnier, J.A., Mounier, E.M., Laverman, A.M., Billen, G.F., 2010. Potential denitrification and nitrous oxide production in the sediments of the Seine River drainage network (France). J. Environ. Qual. 39, 449–459.
- Hernandez, M.E., Mitsch, W.J., 2006. Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes. Wetlands 26, 862–877.
- Hinshaw, S.E., Dahlgren, R.A., 2013. Dissolved nitrous oxide concentrations and fluxes from the eutrophic San Joaquin River, California. Environ. Sci. Technol. 47, 1313–1322.

- Hou, L.J., Yin, G.Y., Liu, M., Zhou, J.L., Zheng, Y.L., Gao, J., et al., 2015. Effects of sulfamethazine on denitrification and the associated N₂O release in estuarine and coastal sediments. Environ. Sci. Technol. 49, 326–333.
- Hu, Q., 2010. The Application of Principal Component Analysis and Artificial Neural Network on Water Quality Evaluation in Poyang Lake.
- Huttunen, J.T., Väisänen, T.S., Hellsten, S.K., Heikkinen, M., Nykänen, H., Jungner, H., et al., 2002. Fluxes of CH₄, CO₂, and N₂O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Glob. Biogeochem. Cycles 16 (3-1), 3–17.
- IPCC, 2007. Climate change 2007: the physical science basis. In: Solomon, S., Qin, D., Manning, M., et al. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change IPCC. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Israel, S., Engelbrecht, P., Tredoux, G., Fey, M.V., 2009. In situ batch denitrification of nitrate-rich groundwater using sawdust as a carbon source—Marydale, South Africa. Water Air Soil Pollut. 204, 177–194.
- Jacobs, A.E., Harrison, J.A., 2014. Effects of floating vegetation on denitrification, nitrogen retention, and greenhouse gas production in wetland microcosms. Biogeochemistry 119, 51–66.
- Knowles, R., 1982. Denitrification. Microbiol. Rev. 46, 43-70.
- Koegel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., et al., 2010. Biogeochemistry of paddy soils. Geoderma 157, 1–14.
- Liu, L.X., Xu, M., 2016. Microbial biomass in sediments affects greenhouse gas effluxes in Poyang Lake in China. J. Freshw. Ecol. 31, 109–121.
- Liu, X.L., Liu, C.Q., Li, S.L., Wang, F.S., Wang, B.L., Wang, Z.L., 2011. Spatiotemporal variations of nitrous oxide (N₂O) emissions from two reservoirs in SW China. Atmos. Environ. 45, 5458–5468.
- Liu, L.X., Xu, M., Lin, M., Zhang, X., 2013. Spatial variability of greenhouse gas effluxes and their controlling factors in the Poyang Lake in China. Pol. J. Environ. Stud. 22, 749–758.
- Marzadri, A., Tonina, D., Bellin, A., Tank, J.L., 2014. A hydrologicmodel demonstrates nitrous oxide emissions depend on streambed morphology. Geophys. Res. Lett. 41, 5484–5491.
- McMahon, P.B., Dennehy, K.F., 1999. N₂O emissions from a nitrogen-enriched river. Environ. Sci. Technol. 33, 21–25.
- Minamikawa, K., Wagai, R., Nishimura, S., Yagi, K., 2015. Heterotrophic denitrification constrains the upper limit of dissolved N₂O-nitrate concentration ratio in agricultural groundwater. Nutr. Cycl. Agroecosyst. 101, 181–191.
- Morse, J.L., Bernhardt, E.S., 2013. Using N-15 tracers to estimate N₂O and N-2 emissions from nitrification and denitrification in coastal plain wetlands under contrasting land-uses. Soil Biol. Biochem. 57, 635–643.
- Morse, J.L., Ardon, M., Bernhardt, E.S., 2012. Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. Ecol. Appl. 22, 264–280.
- Moseman-Valtierra, S., Gonzalez, R., Kroeger, K.D., Tang, J.W., Chao, W.C., Crusius, J., et al., 2011. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N₂O. Atmos. Environ. 45, 4390–4397.

- Musenze, R.S., Werner, U., Grinham, A., Udy, J., Yuan, Z.G., 2014. Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia). Sci. Total Environ. 472, 719–729.
- Musenze, R.S., Werner, U., Grinham, A., Udy, J., Yuan, Z.G., 2015. Methane and nitrous oxide emissions from a subtropical coastal embayment (Moreton Bay, Australia). J. Environ. Sci. 29, 82–96.
- Palta, M.M., Ehrenfeld, J.G., Groffman, P.M., 2013. Denitrification and potential nitrous oxide and carbon dioxide production in brownfield wetland soils. J. Environ. Qual. 42, 1507–1517.
- Paludan, C., Blicher-Mathiesen, G., 1996. Losses of inorganic carbon and nitrous oxide from a temperate freshwater wetland in relation to nitrate loading. Biogeochemistry 35, 305–326.
- Raymond, P.A., Cole, J.J., 2001. Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24, 312–317.
- Silvennoinen, H., Liikanen, A., Torssonen, J., Stange, C.F., Martikainen, P.J., 2008. Denitrification and N₂O effluxes in the Bothnian Bay (northern Baltic Sea) river sediments as affected by temperature under different oxygen concentrations. Biogeochemistry 88, 63–72.
- Venkiteswaran, J.J., Rosamond, M.S., Schiff, S.L., 2014. Nonlinear response of riverine N₂O fluxes to oxygen and temperature. Environ. Sci. Technol. 48, 1566–1573.
- Wang, J.N., Chen, N.W., Yan, W.J., Wang, B., Yang, L.B., 2015. Effect of dissolved oxygen and nitrogen on emission of N₂O from rivers in China. Atmos. Environ. 103, 347–356.
- Wang, S., Liu, C., Yeager, K.M., Wan, G., Li, J., Tao, F., et al., 2009. The spatial distribution and emission of nitrous oxide (N₂O) in a large eutrophic lake in eastern China: anthropogenic effects. Sci. Total Environ. 407, 3330–3337.
- Wang, J.Y., Song, C.C., Zhang, J., Wang, L.L., Zhu, X.Y., Shi, F.X., 2014. Temperature sensitivity of soil carbon mineralization and nitrous oxide emission in different ecosystems along a mountain wetland-forest ecotone in the continuous permafrost of Northeast China. Catena 121, 110–118.
- Wanninkhof, R., 1992. Relationship between wind-speed and gas-exchange over the ocean. J. Geophys. Res. Oceans 97, 7373–7382.
- Weiss, R.F., Price, B.A., 1980. Nitrous-oxide solubility in water and sea water. Mar. Chem. 8, 347–359.
- Yan, W.J., Laursen, A.E., Wang, F., Sun, P., Seitzinger, S.P., 2004. Measurement of denitrification in the Changjiang River. Environ. Chem. 1, 95.
- Yan, W.J., Yang, L.B., Wang, F., Wang, J.N., Ma, P., 2012. Riverine N₂O concentrations, exports to estuary and emissions to atmosphere from the Changjiang River in response to increasing nitrogen loads. Glob. Biogeochem. Cycles 26 (n/a-n/a).
- Zarnetske, J.P., Haggerty, R., Wondzell, S.M., Baker, M.A., 2011. Labile dissolved organic carbon supply limits hyporheic denitrification. J. Geophys. Res. Biogeosci. 116.
- Zhong, J.C., Fan, C.X., Liu, G.F., Zhang, L., Shang, J.G., Gu, X.Z., 2010. Seasonal variation of potential denitrification rates of surface sediment from Meiliang Bay, Taihu Lake, China. J. Environ. Sci. 22, 961–967.