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Receptor models have been proved as useful tools to identify source categories and
quantitatively calculate the contributions of extracted sources. In this study, sixty surface
sediment samples were collected from fourteen lakes in Jiangsu Province, China. The total
concentrations of C4–C14-perfluoroalkyl carboxylic acids and perfluorooctane sulfonic acid
(∑12PFASs) in sediments ranged from 0.264 to 4.44 ng/g dw (dry weight), with an average of
1.76 ng/g dw. Three commonly-applied receptor models, namely principal component
analysis-multiple linear regression (PCA-MLR), positive matrix factorization (PMF) and
Unmixmodels, were employed to apportion PFAS sources in sediments. Overall, these three
models all could well track the ∑12PFASs concentrations as well as the concentrations
explained in sediments. These three models identified consistently four PFAS sources: the
textile treatment sources, the fluoropolymer processing aid/fluororesin coating sources, the
textile treatment/metal plating sources and the precious metal sources, contributing 28.1%,
37.0%, 29.7% and 5.3% by PCA-MLR model, 30.60%, 39.3%, 22.4% and 7.7% by PMFmodel, and
20.6%, 52.4%, 20.2% and 6.8% by Unmix model to the ∑12PFASs, respectively. Comparative
statistics of multiple analytical methods could minimize individual-method weaknesses
and provide convergent results to enhance the persuasiveness of the conclusions. The
findings could give us a better knowledge of PFAS sources in aquatic environments.
© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Themass production andwidespread usage of perfluoroalkyl
substances (PFASs) have begun since the late 1940s (Kim
et al., 2012). PFASs are ubiquitous in various environmental
media, such as water, soils, sediments, sewage sludge, biota
and human bodies (Wang et al., 2015; Zhao et al., 2012). It
was inferred that a large proportion of PFASs would be
released to the surface waters, and sediments, as the natural
g@126.com, huosl@craes

o-Environmental Science
environment of benthic organisms, are considered as one
of the most important environmental sinks of PFASs
(Prevedouros et al., 2006). PFASs have been found in sedi-
ments from several countries and regions, and PFAS concen-
trations have reached up to 800 ng/g dry weight (dw) (Ahrens
et al., 2015; Campo et al., 2015; Zhou et al., 2013). Source
apportionment of PFASs in sediments is of great significance
for pollution control and ecological protection of aquatic
environments.
.org.cn (Shouliang Huo).
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Qualitative and semiquantitative methods have been
widely employed to identify PFAS sources. Xiao et al. (2012)
adopted cluster analysis, correlation analysis, ANOVA and per
capita discharge to distinguish different PFAS patterns in
influent samples from thirty-seven wastewater treatment
plants in a multi-city survey. Murakami et al. (2009) used ratio
methods to evaluate PFAS contributions from street runoff
and wastewater to the aquatic environments. A few methods,
e.g., principal component analysis (PCA), multiple linear
regression model (MLR), positive matrix factorization (PMF)
and Unmix models, have been applied to quantitative source
apportionment of PFASs. However, only one or two of these
models are usually applied to source apportionment of PFASs,
and it is not enough to provide comprehensive information
for PFAS sources (Kuroda et al., 2014; Qi et al., 2016).

Jiangsu Province, located in the lower reaches of the Yangtze
River and Huaihe River, is traversed by the Beijing-Hangzhou
Grand Canal from north to south. It forms part of the Yangtze
River Delta urban agglomeration, which is one of the six
world-class city clusters. As one of the most intensively
industrialized provinces in China, Jiangsu Province contributed
the largest portion of perfluorooctane sulfonic acid (PFOS)
emissions in China (Xie et al., 2013). PFOS concentrations in
Taihu Lake in Jiangsu Province even exceededUSEPA standards
of 0.2 μg/L for PFOS in drinking water (US EPA, 2009; Yang et al.,
2011). Our published work showed that lake sediments from
Jiangsu Province have also suffered the heaviest PFAS pollution
(mean 1.76 ng/g dw) among all provinces studied (Qi et al.,
2016). In this study, PCA-MLR, PMF and Unmix models were
applied to identify source categories and quantitatively calcu-
late source contributions of PFASs in lake sediments from
Jiangsu Province. Results from threemodelswere evaluatedand
compared in order to improve source apportionment of PFASs.
Comparative statistics could enhance the persuasiveness of the
conclusions and offer us a better knowledge of PFAS sources in
lake sediments.
1. Materials and methods

1.1. Standards and reagents

Seventeen PFASs including C4–C14-perfluoroalkyl carboxylic
acids (PFCAs) and C4, C6, C8 and C10-perfluoroalkane sulfonic
acids were targeted. A mixture of seventeen native PFASs
and nine stable isotope-labeled surrogate internal standards
in 2 μg/mL solution mixtures were both purchased from
Wellington Laboratories (Guelph, ON, Canada). Perfluoro-1-
[1,2,3,4,5,6,7,8-13C8]octanesulfonate and perfluoro-n-[1,2,3,4,5,
6,7,8-13C8]octanoic acid (50 μg/mL, 99%) were purchased from
Cambridge Isotope Laboratories (Andover, MA, USA). Detail
information is shown in Appendix A.

1.2. Sample collection

The sampling campaign was carried out in 2013. In total, sixty
surface sediment samples from fourteen lakes of China were
analyzed (Fig. 1). Geographic and limnological features of
fourteen lakes are listed in Appendix A Table S1. Details on
sample collection are displayed in Appendix A.
1.3. Sample extraction and instrumental analysis

The samples were pretreated as previously published proce-
dures with minor modifications and optimizations, using
methanol extraction and cleanup by Oasis WAX-SPE cartridges
(Zhou et al., 2013). PFAS analysis was accomplished using a
ultra-high performance liquid chromatography coupled to a
negative electrospray ionization tandem mass spectrometer
(UPLC-ESI-MS/MS, Xevo TQD, Waters Corp., Milford, MA, USA)
operated in the quantitative multiple reaction monitoring
mode. Detail information on sample extraction, instrument
analysis and quality assurance/quality control is shown in
Appendix A.

1.4. Statistical analysis

PFAS concentrations are reported on a dry weight basis.
Twelve PFASs, including C4–C14-PFCAs and PFOS, were further
analyzed, with high detection frequencies of 87%–100%. At
least 93% of concentrations were quantifiable for each PFAS.
In further analysis, all concentrations lower than the limits of
detection (LODs) and limits of quantification (LOQs) were
reported as half of the LODs and LOQs, respectively. The total
concentrations of C4–C14-PFCAs and PFOS were represented
by the ∑12PFASs. Raw data were obtained from the MassLynx
V4.1 workstation (Waters Corp., Milford, MA, USA) and
processed in the Microsoft Office 2010 software (Microsoft
Inc., Redmond, WA, USA). Pearson correlation analysis was
conducted with the SPSS 22.0 software (SPSS Inc., Chicago, IL,
USA). Data for Pearson correlation analysis conform to a
normal distribution. PCA-MLR, PMF and Unmix models were
run with the Matlab R2014b software (MathWorks Incor.,
Natick, MA, USA), US EPA PMF 5.0 and Unmix 6.0 software
packages, respectively.

1.5. Receptor models

PCA-MLR, PMF and Unmix models are three multivariate
factor analysis receptor models, and none of them need
source categories of pollutants in advance. In source appoint-
ment, it was assumed that PFAS compositions of each source
did not change as they moved from source to receptor and did
not react with each other, as described in the previous study,
and so forth (Watson, 1984). Generally, they can be described
by the following Eq. (1):

cij ¼ ∑
n

k¼1
xin f nj þ eij ð1Þ

where, cij is the concentration of ith species for the jth sample;
xin is the ith species concentration from the nth source; fnj is
the contribution of the nth source to the jth sample; eij is the
error or uncertainty (Yang et al., 2013). Details regarding these
three receptor models were given in their respective user
manuals.

PCA-MLRmodel explains data variables by fewer independent
factors. Prior to statistical analysis, all data were transformed
into a dimensionless standardized form as Eq. (2). Factors
with eigenvalues >1 were evaluated, and the variables were
considered to identify source categories if their factor loadings
were >0.5 (absolute value). The model was carried out using



Fig. 1 – Location of the sampling sites in Jiangsu Province, China.
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Varimax rotation with Kaiser normalization. Detail description
of PCA-MLR model could be found in the study of Thurston
and Spengler (1985).

Zij ¼
cij−ci
� �

σi
ð2Þ

where Zij is the standardized concentration of ith species for the
jth sample and often termed the Z-score; ci is the average
concentration of ith species over all sampling sites; and σi is the
standard deviation of the concentration of ith species.

PMFmodel runswith non-negative constraints on variables.
It retains missing and below detection values with the
associated uncertainties and considers their uncertainties in
the assessment of the quality and reliability of each data point.
The matrix of measured uncertainties was calculated by the
LOD for each species and the error. If the concentration ≤ the
LOD, uncertainty = 5/6 × LOD (Polissar et al., 1998), otherwise,

uncertainty =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðerror� concentrationÞ2 þ LOD2

q
(Yang et al.,

2013). Roughly based on the relative standard deviations, the
errors of all species were set to 0.05. The extra modeling
uncertainty was set to a value of 5%.

The robust Q is the goodness-of-fit parameter calculated
excluding points not fit by the model, defined as samples for
which the uncertainty-scaled residual is greater than 4, while
the true Q is calculated including all points. Different runs
were carried out to improve results by down weighting the
species with low signal-to-noise (S/N) from “strong” to “weak”.
In this way, twelve variables were all included by considering
them “strong”. The ∑12PFASs as the total variable was
considered as “weak”. The factor number (P) was gradually
adapted from 3 to 5. Increasing P is supported only if the
decrease of Q is significant. Consequently, PMFmodel was run
with four factors. All runs converged to find a similar global
minimum. The robust Q was 4073.5 and the true Q was 5976.3.
After a reasonable solution was obtained, the uncertainties in
the modeled solution were further estimated by performing a
total of 300 bootstrap runs (Henry and Christensen, 2010). All
runs converged with a minimum r-value of 0.6 for base-boot
factor mapping. Residuals were checked to be between −3 and
3 for all species and at least 96% of the observations. Fpeak =
0.1 was adopted in the model fitting.

Unmix model is also based on nonnegative constrains. It
reduces the dimensionality of data by the Singular Value
Decomposition method to estimate the number of sources.
Source apportionment results obtained from Unmix model
mainly depend on the minimum R2 (Min. R2) and minimum
signal-to-noise (Min. S/N). It was suggested that perfluoro-
pentanoic acid (PFPeA) should be excluded, because PFPeA
presented more than 50% of the variance and might be
detrimental to the model due to error. It would be better to
keep consistent in PFAS species for three models. Additionally,
PFPeA had only a little more than 50% error, thus it was not
excluded from the modeling process. Scatter plots of all
species versus the total species were used to identify these
species with well-defined edges, which would be applied in the
analysis. The model was set to consider the ∑12PFASs as the
total species. Four sources were identified by Unmix model for
12 PFAS species with Min. R2 value of 0.81 and Min. S/N value
of 2.48.
2. Results and discussion

2.1. PFAS concentrations in sediments

PFASs were detected in all sediment samples. The ∑12PFASs
concentrations ranged from 0.264 to 4.44 ng/g dw, with an
average of 1.76 ng/g dw. 87%–100% of sediment samples had
concentrations higher than LODs for twelve individual PFAS
species. PFOSwas the predominant compound,with anaverage
of 0.384 ng/g dw, followed by perfluoroundecanoic acid
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(PFUnDA) and perfluorooctanoate acid (PFOA) with averages of
0.337 and 0.320 ng/g dw, respectively. Average concentrations
of the long-chained PFCAs (C9–C14) showed about three times
greater than those of the short-chained PFCAs (C4–C7).
These composition characteristics were consistent with previ-
ous studies (Ahrens et al., 2009; Yeung et al., 2013; Zhao et al.,
2015).

Average concentrations of PFASs from fourteen lakes in
Jiangsu Province were 2.17 ng/g dw, with the highest at
Yangcheng Lake (4.28 ng/g dw) and the lowest at Luoma
Lake (0.929 ng/g dw). In general, PFAS levels in sediments
from fourteen lakes in Jiangsu Province of China reached the
low end of the worldwide levels (Appendix A Fig. S1). PFOS and
PFOA ranked at low levels compared with those in sediments
from other regions, while PFUnDA levels were in the middle.

2.2. Source apportionment

A 12 × 60 dataset (twelve individual PFASs and sixty sampling
sites) was introduced into PCA-MLR, PMF and Unimx models
to identify source categories and quantify the contributions of
extracted sources to the ∑12PFASs.

2.2.1. Source apportionment by PCA-MLR model
Four principal components (PC1, PC2, PC3 and PC4) were
extractedwith the eigenvalues >1 by PCA-MLRmodel, account-
ing for 83.4% of the total variances. PC1 explained 51.3% of the
total variances and was characterized by high loading of the
long-chained PFCAs, especifically perfluorododecanoic acid
(PFDoDA), perfluorotridecanoic acid (PFTrDA) and perfluoro-
tetradecanoic acid (PFTeDA), and moderate loadings of PFPeA
and perfluoroheptanoic acid (PFHpA) (Table 1). Long-chained
PFCAs (C10–C16) were usually used for textile impregnation
spray for car interior, thus PC1 was interpreted to reflect the
contributions of PFASs from textile treatments (Cai et al., 2012).
PC2 explained 14.4% of the total variances and was dominated
by PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic
acid (PFDA) and PFUnDA (Table 1). It was reported that PFOA
was the most predominant PFAS compound in water samples
near Daikin Industries Ltd. in Jiangsu Hi-Tech Fluorochemical
Industry Park, contributing at least 88% to the∑PFASs (Cui et al.,
2013). Daikin Industries Ltd. is one of eight international
manufacturers of fluorine chemical industry and fluororesin
coatings are the featured products of the chemicals division.
The salts of PFOA and PFNA have been also used for many
decades as an essential “processing aid” in the manufacture of
fluoropolymers (Buck et al., 2011). The production of PFUnDA
and PFDA was limited, so they were considered to be the
degradation products of precursors (Young et al., 2007).
Table 1 – PFAS species in each extracted source by PCA-MLR, P

Models Textile treatments Fluoropol
fluo

PCA-MLR PFPeA, PFHpA, PFDoDA, PFTrDA, PFTeDA PFOA, PFN
PMF PFUnDA, PFDoDA, PFTrDA, PFTeDA PFPeA, PFH
Unmix PFPeA, PFDoDA, PFTrDA, PFTeDA PFHpA, PFO

PFAS: perfluoroalkyl substances; PCA-MLR: principal component analysis
Consequently, PC2 was identified as the fluoropolymer pro-
cessing aid/fluororesin coating sources. PC3 contributed 9.0% of
the total variances and was characterized by high loadings of
perfluorohexanoic acid (PFHxA) and PFOS (Table 1). PFOS
emissions (tones/year) in Jiangsu Provinces came mainly
from textile treatments and metal platings, accounting 54%
and 43% of the total emissions, respectively (Xie et al., 2013).
Thus, PC3 was selected to represent the joint contributions
of textile treatments and metal platings. PC4 explained 8.7%
of the total variances and was dominated by perfluorobutyric
acid (PFBA), which was mainly applied to the flotation agent
in the synthesis of precious metals (Campo et al., 2015)
(Table 1). Therefore, PC4 was the indicator of the precious
metal sources.

The MLR analysis yielded excellent coefficients for the four
component scores at a stipulated minimum 95% confidence.
The absolute factor scores matrix for PFAS contributions of the
four factors obtained from PCA-MLR model were expressed
using Eq. (3):

ZPFASs ¼ 0:4946T1 þ 0:6527T2 þ 0:5230T3 þ 0:0927T4−1:87065 ð3Þ

The coefficients were set as t, and the contributions of each
factor were calculated using Eq. (4):

Percentage ¼¼ ti=∑tið Þ � 100% ð4Þ

The results showed that the textile treatment sources
contributed 28.1% to the ∑12PFASs, followed by the fluoro-
polymer processing aid/fluororesin coating sources (37.0%),
the textile treatment/metal plating sources (29.7%) and the
preciousmetal sources (5.3%) (Table 2). The 100% (1.76 ng/g dw)
of the observed ∑12PFASs was explained by PCA-MLR model.
These four sources represented the average concentration
contributions of 0.493, 0.650, 0.521 and 0.092 ng/g dw to the
∑12PFASs, respectively (Table 2).

2.2.2. Source apportionment by PMF model
A total of four sources were chosen as the optimal number for
PMFmodel. Source profiles for PFASs obtained from PMFmodel
are displayed in Table 1. The first source had high concentra-
tions for PFAS species including PFUnDA, PFDoDA, PFTrDA and
PFTeDA, identified as the textile treatment sources. For the
second source, PFPeA, PFHpA, PFOA, PFNA and PFDA got high
weighting. Thus, the second source represented the joint
contributions of fluoropolymer processing aids and fluororesin
coatings. The third source was predominated by PFBA,
interpreted as the precious metal sources. The fourth source
was highly related to PFHxA and PFOS, which were the
indicators of textile treatments and metal platings.
MF and Unmix models.

ymer processing aids/
roresin coatings

Textile treatments/
metal platings

Precious
metals

A, PFDA, PFUnDA PFHxA, PFOS PFBA
pA, PFOA, PFNA, PFDA PFHxA, PFOS PFBA
A, PFNA, PFDA, PFUnDA PFHxA, PFOS PFBA

-multiple linear regression; PMF: positive matrix factorization.



Table 2 – Estimated profile contributions and source contributions for PFASs by PCA-MLR, PMF and Unmix models.

Sources Profile contributions Source contributions

PCA-MLR
(ng/g dw)

PMF
(ng/g dw)

Unmix
(ng/g dw)

PCA-MLR PMF Unmix

Textile treatments 0.493 0.464 0.365 28.1% 30.6% 20.6%
Fluoropolymer processing aids/fluororesin coatings 0.650 0.612 0.931 37.0% 39.3% 52.4%
Textile treatments/metal platings 0.521 0.380 0.360 29.7% 22.4% 20.2%
Precious metals 0.092 0.121 0.120 5.3% 7.7% 6.8%
Modeled 1.76 (100.0%) 1.70 (96.7%) 1.77 (101.0%)

Fig. 2 – Fitting plots between the modeled and observed
perfluorooctane sulfonic acid (∑12PFASs) concentrations for
all sediment samples.
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The contributions to the ∑12PFASs of the four sources were
also estimated by PMF model (Table 2). 96.7% (1.70 ng/g dw) of
the observed ∑12PFASs was explained according to this model,
while 3.3% of the ∑12PFASs (0.058 ng/g dw) was not identified.
The highest contributions to the ∑12PFASs in sediments were
the fluoropolymer processing aid/fluororesin coating sources
with a contribution of 39.3%, followed by the textile treatment
sources (30.6%), the textile treatment/metal plating sources
(22.4%) and the precious metal sources (7.7%). These sources
constituted on average 0.668, 0.519, 0.381 and 0.131 ng/g dw of
the ∑12PFASs, respectively.

2.2.3. Source apportionment by Unmix model
Four sources for identifying source categories of PFASs were
extracted by Unmixmodel. These sources were comparable to
those identified by PCA-MLR and PMF models with minor
differences (Table 1). The first source was dominated by PFBA,
which were the same as PC4 of PCA-MLR and the third source
of PMF. PFHxA and PFOS were prominent in the second
source, agreeing to PC3 of PCA-MLR and the fourth source of
PMF. PFPeA, PFDoDA, PFTrDA and PFTeDA got high weighting
in the third source, in keeping with PC1 of PCA-MLR and the
first source of PMF. The fourth source had high concentrations
for PFHpA, PFOA, PFNA, PFDA and PFUnDA, which is in
accordance with PC2 of PCA-MLR and the second source of
PMF. Four sources obtained from Unmix model were identi-
fied as the preciousmetal sources, the textile treatment/metal
plating sources, the textile treatment sources and the
fluoropolymer processing aid/fluororesin coating sources,
respectively.

Estimated profile contributions and source contributions
for PFASs by Unmix model are shown in Table 2. The
estimated source contributions were also similar to those
assigned by PCA-MLR and PMF models, with the order of
52.4%, 20.6%, 20.2% and 6.8%. These sources represented the
average concentration contributions of 0.930, 0.365, 0.359 and
0.120 ng/g dw to the ∑12PFASs, respectively. This model
slightly overestimated the ∑12PFAS concentrations, with a
modeled value of 1.77 ng/g dw.

2.3. Comparison of PCA-MLR, PMF and Unmix results

To better understand PFAS sources, results obtained from
three receptor models were compared and estimated. When
comparing these three models, it is proposed that the
following four conditions must be fully considered: the fitting
degree between the modeled and observed ∑12PFASs
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concentrations in a certain model, the fitting degree between
themodeled ∑12PFASs concentrations among different models,
the number and characteristics of identified sources as
well as the contributions of each extracted source to the
∑12PFASs.

An intra-comparison was conducted by performing linear
regression between the observed concentrations of PFAS
species against those modeled by a certain model. The fitting
plots displayed that these three models all provided good
correlations between the observed and modeled ∑12PFASs
concentrations (r2 ranged from 0.88 to 0.99, p = 0.000) (Fig. 2).
Similar slopes weremeasured in all cases, especially PCA-MLR
model showed a slope equal to unity, with a high correlation
coefficient (r2 = 0.95, p = 0.000). The intercepts varied greatly
with the lowest value found for PMF model. The correlation
coefficients as well as the error percentages between the
modeled and observed concentrations of individual PFAS
species were also used to evaluate these three models'
performance (Table 3). Generally, the r2 were quite high (p =
0.000), suggesting that these threemodels reproducedwell the
spatial evolution of individual PFAS species. As for the errors,
these three models all generated the acceptable values in
most cases. Especially, PCA-MLRmodel consistently produced
almost the identical modeled values of individual PFAS
concentrations as the observed ones. PMF model generated
consistently the modeled values less than or equal to the
observed ones, with the absolute errors in the range of 0–10%
(except for PFBA of 32%, PFPeA of 16%, PFUnDA of 11% and
PFOS 18%). The opposite was the case for Unmix, with the
positive errors of 0–10%, and there are exceptions to PFPeA,
PFOA, PFHxA and PFNA, with the negative errors of −4%, −3%,
−7% and −7%, respectively.

Good correlationswere also observed in an inter-comparison
of the modeled ∑12PFASs concentrations. As shown in Fig. 3, r2

varied from 0.83 to 0.94 (p = 0.000), with the intercepts ranging
from −0.126 to 0.171. The regression between PCA-MLR
and Unmix models displayed an optimal slope very close
to unity, with the lowest absolute intercept. Regarding the
∑12PFASs explained by each model, similar percentages of
Table 3 – Information of individual PFAS concentrations obtain

Observed
(ng/g dw)

PCA-MLR

Modeled
(ng/g dw)

r2 %Error a M
(n

PFBA 0.091 0.091 0.73 0
PFPeA 0.036 0.036 0.58 0
PFHxA 0.039 0.039 0.87 0
PFHpA 0.029 0.029 0.71 0
PFOA 0.320 0.320 0.88 0
PFNA 0.136 0.136 0.86 0
PFDA 0.188 0.188 0.95 0
PFUnDA 0.337 0.337 0.84 0
PFDoDA 0.069 0.069 0.95 0
PFTrDA 0.105 0.105 0.91 0
PFTeDA 0.021 0.021 0.86 0
PFOS 0.384 0.384 0.87 0
∑12PFASs 1.76 1.76 0.95 0

a %Error = (modeled concentration − observed concentration) × 100 / obs
the observed ∑12PFASs were explained by these three models
(Table 2). In terms of the explained concentrations, PCA-MLR
model explained perfectly 100% of the∑12PFASs concentrations.
PMF model slightly underestimated the ∑12PFASs concentra-
tions with a percentage of 96.7%, and Unmix model slightly
overestimated the ∑12PFASs concentrations with a percentage
of 101.0%. In regard to the experimental evidence on source
apportionment, four sources were identified by these three
models (Table 4). The textile treatments/metal plating sources
were identified with high correlation coefficients among these
three models (r = 0.861–0.953, p = 0.000). For other sources,
perfect correlations only occurred between PMF and Unmix
models, with r ranging from 0.905–0.930 (p = 0.001). These
differencesmight be caused by the considerations of themodels
themselves (e.g. the uncertainties and non-negativity con-
straints) or the species selected as variables (Callén et al., 2009;
Yang et al., 2013). It suggested that the identified sources by PMF
and Unmix models were more reliable than those by PCA-MLR
model.

Results from both the intra- and inter-comparisons of the
observed and modeled ∑12PFASs by these three models
indicated that they all could well track the ∑12PFASs as well
as the concentrations explained in sediments. In contrast,
the fitting degree between the modeled and observed
∑12PFASs concentrations, the correlation coefficients as well
as the error percentages between the modeled and observed
concentrations of individual PFAS species in Unmix model
were better than PCA-MLR and PMF models. Thus, Unmix
model was the preferred receptor model in source apportion-
ment of PFASs in sediments, without considering the slightly
overestimation. PMF model was more reliable than PCA-MLR
model, because four sources were all identified with strong
positive correlations between PMF model and Unmix model.
Divergent source profiles were closely related to the models
themselves and the datasets (Yang et al., 2013). In future
studies, it is suggested that source apportionment should
be conducted through multiple methods to mitigate the
weaknesses of individual methods to get more convincing
conclusions.
ed from PCA-MLR, PMF and Unmix models.

PMF Unmix

odeled
g/g dw)

r2 %Error Modeled
(ng/g dw)

r2 %Error

0.062 0.23 −32 0.092 0.98 1
0.030 0.42 −16 0.034 0.46 −4
0.036 0.86 −9 0.037 0.84 −7
0.026 0.54 −10 0.029 0.63 0
0.310 0.82 −3 0.310 0.77 −3
0.136 0.95 0 0.127 0.52 −7
0.174 0.79 −7 0.193 0.91 3
0.301 0.64 −11 0.348 0.76 3
0.067 0.95 −4 0.072 0.90 4
0.103 0.95 −2 0.105 0.90 0
0.019 0.77 −10 0.021 0.87 1
0.316 0.72 −18 0.407 0.90 6
1.70 0.88 −3 1.77 0.99 1

erved concentration.



Fig. 3 – Fitting plots among the modeled ∑12PFASs
concentrations in all sediment samples by three receptor
models.

Table 4 – Pearson correlation coefficients among the
identified sources by PCA-MLR, PMF and Unmix models.

Source Models Pearson
coefficient

Textile treatments PCA-PMF −0.745 ⁎⁎

PCA-Unmix −0.609 ⁎

PMF-Unmix 0.905 ⁎⁎

Fluororesin coatings PCA-PMF 0.024
PCA-Unmix −0.230
PMF-Unmix 0.905 ⁎⁎

Textile treatments/metal platings PCA-PMF 0.872 ⁎⁎

PCA-Unmix 0.861 ⁎⁎

PMF-Unmix 0.953 ⁎⁎

Precious metals PCA-PMF 0.033
PCA-Unmix −0.127
PMF-Unmix 0.930 ⁎⁎

* Correlation is significant at the 0.05 level (2-tailed).
⁎⁎ Correlation is significant at the 0.01 level (2-tailed).
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3. Conclusions

In this study, sixty sediment samples were collected from
fourteen lakes in Jiangsu Province of China. Concentrations of
the∑12PFASs ranged from 0.264 to 4.44 ng/g dw, with an average
of 1.76 ng/g dw. All targeted PFASs were quantifiable and PFOS
was the most abundant compound. Source apportionment of
PFASs in sediments was conducted by three multivariate factor
analysis receptor models: PCA-MLR, PMF and Unmix. Four
sources were identified consistently by three models: textile
treatments, fluoropolymer processing aids/fluororesin coatings,
textile treatments/metal platings and precious metals, contrib-
uting 28.1%, 37.0%, 29.7% and 5.3% by PCA-MLR model, 30.60%,
39.3%, 22.4% and 7.7% by PMF model, and 20.6%, 52.4%, 20.2%
and 6.8% by Unmix model to the ∑12PFASs, respectively. The
similarities showed that these threemodelswere all useful tools
for source apportionment of PFASs in sediments. Unmix model
was recommended as the preferred receptormodel in this work,
and PMF model was more reliable than PCA-MLR model. The
combination of various methods could provide more informa-
tion for source apportionment than individual methods. The
overlapping conclusions from convergent results of multiple
methods were more persuasive.
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