
J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 5 6 ( 2 0 1 7 ) 2 4 0 – 2 4 6

Ava i l ab l e on l i ne a t www.sc i enced i r ec t . com

ScienceDirect

www.e l sev i e r . com/ l oca te / j es
Development of a method for comprehensive water
quality forecasting and its application in Miyun reservoir
of Beijing, China
Lei Zhang, Zhihong Zou, Wei Shan⁎

School of Economics and Management, Beihang University, Beijing 100191, China. Email: windyhot@126.com
A R T I C L E I N F O
⁎ Corresponding author. E-mail: shanwei@bu

http://dx.doi.org/10.1016/j.jes.2016.07.017
1001-0742/© 2016 The Research Center for Ec
A B S T R A C T
Article history:
Received 3 March 2016
Revised 22 June 2016
Accepted 9 July 2016
Available online 29 October 2016
Water quality forecasting is an essential part of water resource management. Spatiotemporal
variations of water quality and their inherent constraints make it very complex. This study
explored a data-based method for short-term water quality forecasting. Prediction of water
quality indicators including dissolved oxygen, chemical oxygen demand by KMnO4 and
ammonia nitrogen using support vector machine was taken as inputs of the particle swarm
algorithm based optimal wavelet neural network to forecast the whole status index of water
quality. Gubeikou monitoring section of Miyun reservoir in Beijing, China was taken as the
study case to examine effectiveness of this approach. The experiment results also revealed
that the proposed model has advantages of stability and time reduction in comparison with
other data-driven models including traditional BP neural network model, wavelet neural
network model and Gradient Boosting Decision Tree model. It can be used as an effective
approach to perform short-term comprehensive water quality prediction.
© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

In recent years, natural water bodies suffered varying degrees of
pollution. Hence the surface water quality has always been a
research hotspot in environmental science. Accurate and
effective prediction of water quality is critical to better under-
stand aqueous ecosystems. A variety of methods have been
applied in this field (Li, 2006; Zou et al., 2008; Zhu et al., 2007;
Bahaa et al., 2012; Kim and Seo, 2015; Deng et al., 2014, 2015).
Most researches focused on the prediction of a certain single
water quality indicator, few on the whole status. Because of the
wide range of physical, chemical, biological factors influencing
water quality, the traditional predictionmethod based on linear
relationships isnot sufficient for this problem. Several nonlinear
mapping methods were used including the weighted Markov
chain (Qiu et al., 2007), logistic regression (Zou et al., 2008),
aa.edu.cn (Wei Shan).

o-Environmental Science
genetic algorithm based optimal Back Propagation (BP) neural
network (Ding et al., 2014). Zhou (2012) studied water quality
attribute data and graphic data and developed water quality
prediction system using data management and topology
relationship analysis function of the Java platform. Yan and
Yang (2015) used the fuzzy comprehensive evaluation and
analytic hierarchy process for water quality assessment and
proposed the regression model of the inflow and water quality
fuzzy comprehensive evaluation index. Forecasting of water
quality status remains challenging. Further explorations are
needed in order to find suitable methods and increase predic-
tion accuracy.

Wavelet neural network (WNN) combined time-frequency
localization character ofwavelet transfer and self-study capacity
of neural network. With strong approximation ability and fault
tolerance, it has been a research hotspot for the last decades and
s, Chinese Academy of Sciences. Published by Elsevier B.V.
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widely applied in forecast filed such as mid-long-term power
load forecasting (He et al., 2012), air temperature prediction
(Wang and Gou, 2015) and seawater quality parameter predic-
tion (Mohamad and Mohamad, 2015). Particle swarm optimiza-
tion (PSO) is a computational method that optimizes a problem
by iteratively trying to improve a candidate solution with regard
to a given measure of quality. Zhang et al. (2014) proposed a
conjunction method of wavelet transform-PSO-support vector
machine for stream flow forecasting. Application of PSO based
optimal WNN model in power transformer fault diagnosis
(Cheng et al., 2014) and parameter optimization in twist spring
back process for high-strength sheets (Xie et al., 2015) proved
that the PSOalgorithmcanaccelerate the training speed ofWNN
and improve the accuracy of training. In the comparison made
by Azimirad et al. (2015) among three classifiers (PSO based
optimal WNN, Artificial Immune System (AIS) based optimal
WNN and Genetic Algorithm based optimal WNN), the PSO
based optimal WNN results in the best classification accuracy.

In this study, the PSO based optimal WNN model was
proposed for comprehensive water quality forecasting. First,
water quality indicators including dissolved oxygen (DO),
chemical oxygen demand by KMnO4 (CODMn) and ammonia
nitrogen (NH3-N) were predicted with support vector machine
(SVM). Then the PSO based optimal WNN model was adopted
to predict the whole status index of water quality. To test the
forecasting performance, application of the optimized model
was performed to predict water grades of the Gubeikou
monitoring section, Miyun reservoir in Beijing, China.
1. Methodology

1.1. Support vector machine

SVM was first put forward by Vapnik in 1995. It is theoretically
based on statistical learning theory, namely approximate imple-
mentation of structure risk minimization (Zhang, 2000). It has
been commonly used in the pattern recognition and nonlinear
regression. SVM has good generality, robustness, effectiveness
and simple computation, which gives it great advantage in
solving problems of finite sample, nonlinear, over-fitting and
pattern recognition with high dimension (Zhang, 2000).

River water quality system is dynamic non-equilibrium
composite system with openness, complexity and nonlinearity
(Xu et al., 2003). Time series of a certain single factor are
seemingly irregular and random, which reduce the likelihood of
long-term forecasting.However, inherent regularity of the system
makes short-term prediction for the time series feasible. Proce-
dures of regression prediction with SVM are as shown in Fig. 1.

1.2. The PSO algorithm

The PSO algorithm solves optimization problems by simulat-
ing the birds' predation. In PSO, the population is referred to
as a swarm and each individual in the swarm is called a
particle. A particle represents a potential optimal solution of
the optimization problem. It was characterized by its location,
velocity and the fitness value. The fitness value is decided
by the objective function of the optimization problem. The
optimal or approximately optimal solution can be found from
iteration to iteration. Each particle is iteratively updated by its
own best fitness value and the best fitness value of the entire
swarm so far. Suppose there are n particles in D-dimension
space. The position of a particle can be described as X = (X1,
X2, …, XD. The velocity for the ith particle can be denoted as
V = [Vi1, Vi2,…,ViD]. The best position so far for the ith particle
is represented as Pi = [Pi1, Pi2, …, PiD]T. The best position so far
for the entire swarm can be described as Pg = [Pg1, Pg2,…, PgD]T.
In each iteration, particles change its position and velocity
according to the following equations:

Vkþ1
id ¼ ωVk

id þ c1r1 Pkid−X
k
id

� �
þ c2r2 Pkgd−X

k
id

� �
ð1Þ

Xkþ1
id ¼ Xk

id þ Vkþ1
id ð2Þ

where, ω is the inertia weight; d = 1, 2, …, D; i = 1, 2, …, n; k is
the current generation;c1 and c2 are nonnegative constants,
controlling the maximum step size; r1 and r2 are random
numbers in [0,1]. The velocities and positions are normally
limited in [−Xmax, Xmax] and [−Vmax, Vmax] respectively in case
of the particles' blind search.

1.3. Wavelet neural network

A typical WNN model consists of three layers: input, output
and hidden layer. It takes the topology structure of BP neural
network as foundation and the wavelet function as the
transfer function of the hidden layers. WNN with strong
nonlinearity mapping capacity organically combined wavelet
analysis and neural network. The wavelet neural network
realization process is as followed (Chen et al., 1999):

Set the note number in the input layer, hidden layer and
output layer m, n, N respectively. The WNN model can be
expressed by the following formulas.

yi tð Þ ¼ ∑
n

j¼0
wij Ψ a;bð Þ ∑

n

j¼0
wjk x kð Þ tð Þ

 !
; i ¼ 1;2;…;N ð3Þ

E ¼ 1
2
∑
N

i¼i
yi tð Þ−d ið Þ
� �2 ð4Þ

where, xk is the input vector; yi is the predicted output vector;
wij is the connection weight form the ith node of the output
layer to the jth node of the hidden layer; wjk is the connection
weight from the jth node of the hidden layer to the kth node of
the output layer; Ψ(a,b) is the activation function of the hidden
layer; aj, bj are the expansion parameter and the translation
parameter of the wavelet function separately; di is the desired
output vector; and E is the error function.

The wavelet neural network adopts the gradient descent
algorithm to correct the connection weight, thus minimize
the network error. The parameters are changed using Eq. (5).

wjk tþ 1ð Þ ¼ −η
∂E
∂wjk

þwjk tð Þ ð5Þ

where, η is the learning rate. wij ,aj ,bj can be adjusted in the
same way. When the maximum number of iterations is
exceeded or the targeted error is less than the predetermined
threshold, the WNN training is stopped; otherwise, the WNN
training should be continued (Li et al., 2015).
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1.4. PSO based optimal WNN model

Compared with BP neural network and Radial basis function
(RBF) neural network, WNN is faster in convergence and has
more effective function approximation ability. However, as it
also takes the gradient descent method, the premature conver-
genceproblemand local optimal problemarehardly evitable for
it. Therefore the PSO algorithm is introduced to tackle the
parameter optimization problem of WNN. It can avoid the
requirement of differentiability and derivability for excitation
function and the process of derivation of the function. It has
shown excellent performance in optimization and overcome
the drawbacks of falling in to local extremes. The procedures of
PSO optimizing WNN can be concluded as follows:

Steps 1: Set up a WNN model with the structure of N–M–L,
where N, M, and L represent the node number of the input
layer, the hidden layer and the output layer respectively.
Map the parameters of the WNN model to the location of
particles in the PSO algorithm, therefore the dimension of
particles can be calculated using Eq. (6).

D ¼ Nþ 1ð Þ �Mþ Lþ 1ð Þ �M ð6Þ

Step 2: Initialize particles with a randomized velocity and
position.
Step 3: Input the training sample data to the WNN model,
calculate E according to Eq. (4) and set it as the fitness
value of particles. The best position so far for the particle
until the current iteration is represent as Pbest. The best
position so far for the entire swarm until the current
iteration is denoted as Gbest.
Step 4: Update the velocity and position for each particle
according to Eqs. (1)–(2).
Select independent 
variable & 
dependent variable

Sample data 
normalization

Training phase

Fig. 1 – Diagram for regression prediction algorithm p
Step 5: If the stopping iteration condition is met, output
Gbest as parameters of the WNN model; if not, loop to
step 3.
2. Development of the method

2.1. Frame of the method

The comprehensive water quality forecasting model based on
SVM and optimized WNN using PSO is described in Fig. 2.

As illustrated in Fig. 2, the selected water quality indicators
are firstly predicted with SVM separately. The WNN model is
improved with PSO and trained with sample data generated
by the random number generator. The predictions of water
quality indicators are used as the inputs of the WNNmodel to
forecast the whole status index of water quality in the next
period.

2.2. Selection of water quality indicators

Water quality covers a wide range of physical, chemical, and
biological indicators such as DO, temperature, electrical
conductivity, salinity, turbidity, alkalinity, ammonia, total
dissolved solids, nitrate, sulfate and phosphate (Mohamad
and Mohamad, 2015). According to the availability to the
monitoring data and Standard GB 3838-2002, this paper
selected DO, CODMn and NH3-N as single factor indexes.

2.3. Sample data analysis

According to Standard GB 3838-2002, water quality is divided
into six classes, namely I, II, III, IV, V and V minus. According
to monitoring data from the Ministry of Environmental
Select kernel 
function

Select optimal 
parameters with 
cross-validation

Train SVM

Test dataSVM modeling 

Fitting and 
forecasting 

Error  

Output

No

Yes

Testing and 
using phase

Select the loss 
function

rocess with SVM. SVM: support vector machine.
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Fig. 2 – Schematic of the comprehensive water quality forecasting model.
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Protection, over 90% of 145 water quality automatic monitor-
ing section in China's main water systems belong to Classes
I–IV. Hence Classes V and V minus are not taken under
consideration in this study.

A large number of sample data are required to ensure the
accuracy of neural network training. In order to get enough
samples, values of chosen single factor indexes generated by
the random number generator according to Standard GB
3838-2002 are taken as inputs when training the optimized
WNN. According to the attribution of every indicator, the
whole status index is proposed as output of the model. It can
be calculated according to the following equations:

A ¼ CODMn �NH3−N
DO

ð7Þ

W ¼ Anormalized þ i−1ð Þ � 0:25 ð8Þ

where, DO, CODMn, and NH3-N (in mg/L) are values of the
indicators respectively; and i is water quality class. According
to the attribution of each indicator, these indicators can be
divided into two types: efficiency type and cost type.
Efficiency type means it is best when the indicator value is
the biggest; cost type means it is best when the value is the
smallest. DO is efficiency type, and the other two indicators
are cost type. Therefore, normalized value of Awas brought to
corresponding location in [0,1] with Eq. (8). Range of inputs
and outputs are shown in Table 1. 5000 groups of data were
generated using the random number generator, including
Table 1 – Range of samples for the optimizedWNNmodel.

Single factor index Water quality class

I II III IV

DO (mg/L) 7.5–12 6–7.5 5–6 3–5
CODMn (mg/L) 0–2 2–4 4–6 6–10
NH3-N (mg/L) 0.05–0.15 0.15–0.5 0.5–1 1–1.5
W 0–0.25 0.25–0.5 0.5–0.75 0.75–1

WNN: Wavelet neural network; DO: dissolved oxygen; COD:
chemical oxygen demand; NH3-N: ammonia nitrogen.
4900 groups as training samples and 100 groups as testing
samples. Inputs are also needed to be normalized for better
training effect.

2.4. Model evaluation criterion

Root-mean-square error (RMSE), mean absolute error (MAE)
and error rate of water quality prediction are chosen as
criterion to evaluate the effectiveness and forecast the
performance of the model. RMSE is very sensitive to the
maximum and minimum error, which enables it effectively
reflect the accuracy of the prediction results. Since the
deviation is absolute in MAE, it can preferably reflect the
actual situation of prediction error (Zhang, 2000). The indexes
are defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

1
Wi predictedð Þ−Wi calculatedð Þ
� �2s

ð9Þ

MAE ¼ 1
n
∑
n

1
Wi predictedð Þ−Wi calculatedð Þ

���� ð10Þ

Error rate ¼ Error count
n

ð11Þ

where n is the forecasting times.
3. Water quality prediction of Miyun reservoir inlet

3.1. Prediction object and data source

Miyun reservoir is located at the downstream of Chaohe River
which originated in Hebei Province. Miyun reservoir serves as
Beijing's largest source of drinking water, with a catchment
area of 188 km2 and a storage capacity of 4 × 109 m3. Chaohe
River is of great importance for Miyun reservoir, accounting
for about 60% of its water inflow. Therefore, water quality of
the Miyun reservoir inlet (Gubeikou monitoring section) was
chosen as the research target. The data of Miyun reservoir
inlet for 104 weeks from January 2014 to December 2015 were
selected as sample data, week 1 to week 94 for in-sample
simulation and week 95 to week 104 for out-of-sample



Table 2 – Characteristics of the experiments and prediction results.

No. Input Output Data size RMSE MAE

1 DO(t − 1), DO(t − 2), DO(t − 3) DO(t) 91 1.2256 0.2346
2 DO(t − 1), DO(t − 2), DO(t − 3) DO(t) 41 1.1511 0.3162
3 CODMn(t − 1), CODMn(t − 2), CODMn(t − 3) CODMn(t) 91 0.1998 0.2001
4 CODMn(t − 1), CODMn(t − 2), CODMn(t − 3) CODMn(t) 41 0.2227 0.2228
5 NH3-N(t − 1), NH3-N(t − 2), NH3-N(t − 3) NH3-N(t) 91 0.0452 0.0551
6 NH3-N(t − 1), NH3-N(t − 2), NH3-N(t − 3) NH3-N(t) 41 0.0372 0.0370
7 DO(t − 1),DO(t − 2),DO(t − 3),DO(t − 4) DO(t) 90 1.3125 0.6348
8 DO(t − 1),DO(t − 2),DO(t − 3),DO(t − 4) DO(t) 40 1.2900 0.9793
9 CODMn(t − 1), CODMn(t − 2), CODMn(t − 3), CODMn(t − 4) CODMn(t) 90 0.2041 0.2223
10 CODMn(t − 1), CODMn(t − 2), CODMn(t − 3), CODMn(t − 4) CODMn(t) 40 0.2029 0.2653
11 NH3-N(t − 1), NH3-N(t − 2), NH3-N(t − 3), NH3-N(t − 4) NH3-N(t) 90 0.0435 0.0540
12 NH3-N(t − 1), NH3-N(t − 2), NH3-N(t − 3), NH3-N(t − 4) NH3-N(t) 40 0.0369 0.0380

RMSE: root-mean-square error; MAE: mean absolute error.
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forecasting. It should be mentioned that the value of the week
ismean value of the seven daily data in the week. Data used in
this paper were collected from the network of the Ministry of
Environmental Protection of the People's Republic of China.

3.2. Forecasting of single factor indexes

Forecasting of single factor indexes using SVMwas carried out
by Library for Support Vector Machines (LIB-SVM) toolkit in
MATLAB 14.0. To test the efficiency of SVM, experiments with
different characteristics were conducted. Characteristics of
the experiments and results are shown in Table 2.

As shown in Table 2, there is no significant difference
between the prediction results of SVM with various data size
and time lag. Therefore, values of the first three days were
selected as independent variables, the 4th day as dependent
variable for prediction of single factor indexes and the data
size was set 91. To illustrate prediction effect of SVM, results
of DO is shown as an example.

Distribution of regression forecasting error is illustrated in
Fig. 3. The fitting errors are clustered around 0.001213, which
is in the allowable range. Fig. 4 presents the DO time series of
Gubeikou monitoring section and regression predictions. DO
in this section is basically located in the range of 6 to 13 mg/L.
Fig. 3 – Frequency statistics of regressing forecastin
DO is an important index of water self-purification ability. In
this regards, water quality of this section has remained at
high level.

3.3. Comprehensive water quality prediction

Different parameter settings are examined to get the best
model performance. The optimized WNN model parameter
values were ultimately set as: N is 3; M is 4; L is 1; maximum
number of iterations were 500, 1000 and 2000 successively;
population size is 30; c1 and c2 are 1.5; initial inertia weight and
final inertia weight are 0.9 and 0.4, respectively. Different
data-driven models including traditional BP neural network,
WNN model and Gradient Boosting Decision Tree (GBDT)
model using the same data were introduced to compare with
the optimized WNN model. The BP neural network model
parameter values were set as: N is 3;M is 5; L is 1; learning rate
is 0.2; maximum number of iterations were 2000, 3000, 4000
and 5000 successively. The WNN model parameter values
were set as: N is 3; M is 4; L is 1; learning rate is 0.1; maximum
number of iterations were 1000, 1500, 2000 successively. The
GBDT model parameter values were set as: estimator is 200;
maximum depth is 25, learning rate is 0.01. A large number of
simulation experiments indicated that models with the above
g errors for DO in Gubeikou monitoring section.
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settings gained stable performance and good generalization
ability. The forecasting results with four different models are
shown in Table 3.

Based on the data from the website, Gubeikou monitoring
section remained in Class II during 2014 and 2015. Prediction
results in Table 3 indicate that the four models all achieved
accurate predicting outcomes, which proved the effectivity of
themodel proposed in this paper. The prediction results gained
by the optimized WNN model are acceptable and reliable. The
model proposed in this paper enhances the water quality
forecasting system. It canbe regardedasauseful and innovative
tool to perform comprehensive water quality prediction.
Table 3 – Forecasting results of the optimizedWNNmodel
and other data-driven models.

Week Real
value

Optimized
WNN

WNN BP neural
network

GBDT

95 0.4315 0.3404 0.3294 0.3192 0.3217
96 0.3976 0.3095 0.3149 0.3132 0.2901
97 0.5000 0.3470 0.3420 0.3723 0.3198
98 0.4480 0.3295 0.3295 0.3511 0.3074
99 0.2800 0.2967 0.2630 0.2773 0.2633
100 0.2592 0.2762 0.2562 0.3110 0.2567
101 0.2500 0.2780 0.2523 0.3175 0.2565
102 0.3068 0.2934 0.2853 0.3752 0.2759
103 0.2599 0.2805 0.2602 0.3213 0.2581
104 0.2670 0.2795 0.2649 0.3320 0.2577

WNN: Wavelet Neural Network; BP: Back Propagation; GBDT:
Gradient Boosting Decision Tree.

Table 4 – Evaluation of optimized WNN model and other
data-driven models.

Index Optimized
WNN

WNN BP neural
network

GBDT

RMSE 0.0701 0.0739 0.2556 0.0740
MAE 0.0546 0.0508 0.0738 0.0596

WNN: Wavelet Neural Network; BP: Back Propagation; GBDT:
Gradient Boosting Decision Tree.
Performance of the optimized WNN model is shown in
Table 4, together with that of the other three data-driven
models for comparison. As can be seen in Table 4, the
optimized WNN model has better prediction accuracy
(RMSE = 0.0701), especially when compared to the BP neural
network model (RMSE = 0.2556). In addition, the optimized
WNN model can get acceptable results within 1000 epochs
while the WNN model within 2000 epochs and the BP neural
network model within 5000 epochs, which indicated that the
optimized WNN model has the potential to accelerate
convergence rate and reduce errors in prediction. The results
demonstrate that the PSO technique is a good tool to solve
parameter optimization problems.
4. Conclusions

This paper proposed a new framework to improve the
forecasting of water grades. It was based on SVM and optimized
WNN using PSO. First, water quality indicators including DO,
CODMn, NH3-N were predicted with SVM. Then the predictions
were used as the inputs of the trained WNN model to forecast
the whole status index of water quality in the next time.

The experiments of the Gubeikou monitoring section, inlet
ofMiyun reservoir, verified the effectivity of themodel. It can be
applied on short-term water quality forecasting, precaution
basin water pollution accidents and providing more objective
reference for water quality management. Experiments also
show that the optimized WNN model has the potential to
accelerate convergence rate and reduce errors in prediction
when compared to other data-driven models. This study
provided novel ideas about exploration of methods for compre-
hensive water quality forecasting. Methods of reducing forecast
error and enhancing the generalization ability will be discussed
in the future study.
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