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ABSTRACT

Wastewater treatment is one of critical issues faced by water utilities, and receives more and
more attentions recently. The energy consumption modeling in biochemical wastewater
treatment was investigated in the study via a general and robust approach based on
Bayesian semi-parametric quantile regression. The dataset was derived from a municipal
wastewater treatment plant, where the energy consumption of unit chemical oxygen
demand (COD) reduction was the response variable of interest. Via the proposed approach,
the comprehensive regression pictures of the energy consumption and truly influencing
factors, i.e., the regression relationships at lower, median and higher energy consumption
levels were characterized respectively. Meanwhile, the proposals for energy saving in
different cases were also facilitated specifically. First, the lower level of energy consumption
was closely associated with the temperature of influent wastewater, and the chroma-rich
wastewater also showed helpful in the execution of energy saving. Second, at median energy
consumption level, the COD-rich wastewater played a determinative role in the reduction
of energy consumption, while the higher quality of treated water led to slightly energy
intensive. Third, the higher level of energy consumption was most likely to be attributed
to the relatively high temperature of wastewater and total nitrogen (TN)-rich wastewater,
and both of the factors were preferably to be avoided to alleviate the burden of energy
consumption. The study provided an efficient approach to controlling the energy consump-
tion of wastewater treatment in the perspective of statistical regression modeling, and offered
valuable suggestions for the future energy saving.
© 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
Published by Elsevier B.V.

Introduction

Nevertheless, wastewater treatment is an energy-intensive
industry that the high cost of energy consumption hinders its

As a significant area in environmental sciences, wastewater
treatment has been attracting considerable research in recent
decades (Gao et al., 2017; Han et al., 2013; Wang et al., 2016).
It serves a double purpose of resolving the water pollution
and simultaneously motivating the water reuse, hence it
protects the environment and alleviates the shortage of water.

development to some degree. Thereinto, the electric energy
consumption accounts for the largest ratio (Jin and Yang, 2012),
and the biochemical treatment, which consumes about 60% of
the total energy (Li, 2010; Jin et al., 2009; Bai, 2012), is the most
energy-consuming unit in the entire process. Therefore, it
is very necessary to model the electric energy consumption of
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biochemical treatment, analyze the effect of influencing factors
and present proposals for energy saving in a mathematical
point of view.

Owing to the complicated relationships among numerous
influencing factors, the mathematical modeling for electric
energy consumption in wastewater treatment is still an
open problem. The existing methods mainly focused on the
mechanism modeling, neural network and statistical regres-
sion. Whereas, most of the mechanism models only consid-
ered single influencing factor and cannot explain the law of
energy consumption correctly (Yi et al., 2009; Kusiak et al.,
2013; Han et al, 2016). Jin et al. (2014) employed back-
propagation (BP) neural network in the prediction of energy
consumption in anoxic-oxic (A/O) process. Huang et al. (2013)
utilized Elman neural network to model the relationship
between energy consumption and discharged water quality,
yet the system dynamics was not considered in the method.
Han et al. (2016) proposed an adaptive regressive kernel
function to deal with the problem and obtained well model
precision. Statistical regression modeling is an approach
which explores the function relationship between response
variable and predictors based on data. Jiang et al. (2014)
utilized statistical methods to analyze the influencing factors
of energy consumption in municipal wastewater treatment
plant. Yang et al. (2008), Liang (2014) and Ren et al. (2015)
applied power function regression, multivariate linear regres-
sion and exponential regression respectively to modeling the
energy consumption in wastewater treatment, while the
parametric methods presume fixed function form before
estimation and usually lead to misspecification of the model.

Fortunately, semi-parametric regression methods avoid
the above concerns naturally. It is a data-driven approach
which relaxes the presumptions on parameter space and
function form, and thus obtains better flexibility and robust-
ness. In particular, partial linear single-index model (PLSIM)
(Carroll et al., 1997; Liang et al., 2010; Boente and Rodriguez,
2012) is a widely used semi-parametric regression model. It
retains the advantages of interpretability in linear regression
and generality in non-parametric models. Furthermore, the
dimensionality of the model is reduced significantly via the
index term. In short, incorporating the PLSIM into the energy
consumption can not only detect the unknown relationship
between energy consumption and influencing factors, but
also lead to explicit interpretations of the impact of factors.

However, there exist numerous potential factors that affect
the variation of energy consumption in wastewater treat-
ment, some of the factors are highly correlated and exert
repetitive impacts, and some of them are actually insignifi-
cant to the energy consumption. Consequently, a crucial step
before figuring out the function relationship is to find out
the truly contributing factors and exclude the unnecessary
ones. Indicator model selection (IMS) is a popular variable
selection technique in Bayesian framework (Araki et al., 2015;
O’Hara and Sillanpaa, 2009). It uses binary variables to
indicate which predictors are significant in the true model,
and in terms of prior knowledge and observed data, the
posterior inference of binary indicators could be achieved
with the approximation to posterior distributions by Markov
Chain Monte Carlo (MCMC) simulation. With the most direct
spike-and-slab prior, the estimates of insignificant coefficients

would be exactly zeros, and the corresponding predictors are
regarded as excluded.

Nevertheless, the above mentioned methods depend largely
on conditional mean regression and can only reflect the
regression information at mean level of the energy consump-
tion. Actually, the significance of influencing factors and their
impact on energy consumption might change with different
levels of energy consumption. Additionally, the estimates from
the conditional mean regression are sensitive to outliers, and
the estimation efficiency might be impaired in the case of usual
non-normal error distributions.

In these circumstances, quantile regression serves an impor-
tant alternative (Koenker and Bassett, 1978). The methodology
could characterize the function relationship at any interested
quantiles of the distribution of response variable, and can
also capture the significant factors for corresponding quantile
of response variable; therefore it provides more comprehensive
regression information and better adaptability to non-normal
random errors. Particularly, with the asymmetric Laplace
distribution (ALD) assigned to the error term, quantile regres-
sion could be implemented straightforwardly via Bayesian
approaches (Yu and Moyeed, 2001; Koenker and Machado,
1999). One of the attractions in ALD is that it fits the real world
data more suitably than common symmetric distributions in
virtue of the peaked mode and fat tail of the distribution. The
Bayesian quantile estimates under ALD errors are inferred from
the Markov chain of parameters using the MCMC mechanism.

Motivated by those considerations, the aim of the study
was to model the electric energy consumption in biochemical
wastewater treatment at different levels of energy consump-
tion, and present proposals for energy saving in terms of
the results. To achieve that, a semi-parametric PLSIM was
adopted to approximate the function relationship between
energy consumption and influencing factors, with the ALD
being assigned as error distribution to formulate Bayesian
quantile regression for the model and the IMS technique being
applied to finding out truly contributing factors. By means of
the proposed approach, the factors which are significant with
respect to the change of energy consumption at lower, median
and higher consumption levels were identified respectively,
and the different trends that show how they affect the energy
consumption across various levels were also depicted. Finally,
the proposals with respect to the energy saving were summa-
rized based on the mathematical models.

1. Energy consumption modeling based on Bayesian
semi-parametric quantile regression

1.1. Energy consumption and potential influencing factors

To efficiently measure the actual energy consumption for
pollutant removal, the electric energy consumption of unit
chemical oxygen demand (COD) reduction in biochemical
treatment was taken as the interested response variable to
observe (Energy_Consmp, kWh/kg). The potential influencing
factors included: influent pH (pH), influent biochemical oxygen
demand concentration (BOD, mg/L), influent chemical oxygen
demand concentration (COD, mg/L), influent suspend solid
concentration (SS, mg/L), influent chroma (Chrom), influent
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total phosphorus concentration (TP, mg/L), influent total
nitrogen concentration (TN, mg/L), influent NH;-N concentra-
tion (NHs-N, mg/L), treatment scale per day (Scale, m®/day),
national discharge standard that the treated water reaches
(Stand), degree of coldness and hotness of influent wastewater
(Degree).

The reason to utilize the influent pollutant concentration
is that it is an observable and dominant factor in wastewater
treatment, additionally, the influent concentrations are far
greater than the effluent values, and most effluent pollutant
concentrations have no obvious changes due to the restriction
of national discharge standard, hence the influent pollutant
concentration is used to represent the pollutant removal
efficiency. In the study, Stand and Degree were handled as
categorical variables. Specifically, Stand = 0,1,2,3 denote the
standard of the third class, the secondary class, the first class
B and the first class A respectively, which accords with the
discharge standard of pollutants for municipal wastewater
treatment plant GB18918-2002. For another factor, Degree was
abstracted from the influent wastewater temperature for a
more straightforward concept, and it was designed as three
levels: Degree = 0,1,2, which point to the ranges 10-15°C, 15-25°C
and 25-30°C respectively.

1.2. Bayesian semi-parametric quantile regression model for
energy consumption

The function relationship between energy consumption and
influencing factors is of crucial importance in the character-
ization for the effect of truly influencing factors on the energy
consumption. Compared with the common parametric regres-
sion method, which determines the function form artificially
and often leads to model misspecification, semi-parametric
regression approach yields better generality and flexibility. It
relaxes presumptions on the model form and utilizes useful
available information to simplify the model. Hence, semi-
parametric regression model was adopted in the study to deal
with the function relationship between energy consumption
and influencing factors.

PLSIM is one of the most popular semi-parametric models.
It reconciles the parametric linear part and non-parametric
single-index component. Among the influencing factors, the
categorical variables Stand and Degree were assigned to the
linear part, while the other factors were involved into the
single-index term. The PLSIM facilitated easy-interpretably
linear effect of Stand and Degree and flexibly nonlinear effect
of pH, BOD, COD, SS, Chrom, TP, TN, NH3-N and Scale. The
function relationship between the energy consumption and
influencing factors was fitted in the following PLSIM:

Energy_Consmp; = By Stand, + B,Standy, + psStands, + B,Degree;,
+ BsDegree,, + g(a1pH; + a,BOD; + o3COD;
+ 04SS; + asChrom; + agTP;+0o7TN;

+ agNH3-Nj + agscalei) + &,

where {Energy_Consmp;; X;, Vi}'- 1 are the observations, ¢; is the
independent and identically distributed (iid) random error,
the observations X; = (Stand;,StandzHStandgi,Degreel‘,Degreezl)T,
Vi = (pHi,BODi, CODI',SSI',ChTOmi,TPi,TNi,NHg - Ni,ScaIei)T. Here,
(Stand,, Stand,, Stands)" and (Degree;,Degree,)” are dummy

vectors to treat the categorical variables Stand and Degree
respectively, with dummy variable Standy, = 1 indicating that
the category k is observed in the ith observation, 0 otherwise,
and similar to Degree;, k=1, 2, 3, j=1, 2. The unknown
quantities to be estimated in the above model include the
linear term B = (By,...,5s)", the index vector a = (0, ...,00)" and
the univariate link function g(.).

For brevity purpose, Model (1) is simplified as the frame-
work below

Energy-Consmp; = X; B + g(Vi o) + &, 2)

There into, X/3 is the parametric linear part that serves
straightforward interpretability, while Vo is the single-index
term that twists the high-dimensional factors to a 1-dimensional
quantity and affects the Energy_Consmp nonparametrically via
g()-

In the semi-parametric energy consumption model, not all
the potential influencing factors exert working effect on
Energy_Consmp. In order to find out the truly contributing
factors, IMS based algorithm was applied to the model. In
detail, independent binary indicators T and ry; were intro-
duced to the coefficient of each influencing factors, and
the coefficient could be rewritten as o = To, 0, Br, = Tpfh, where
the binary variables r,, r; € {0,1} and the value of one
implies the corresponding factor is included in the model
and zero otherwise, j =1, ...,9,1 =1, ..., 5. And the linear term
B:= (B, ...n)", the index vector o, = (0,,...,0,)", and the
indicator vectors 15 = (1, ..., 75)", To = (Toy - Tay) -

The link function g(.) acts as an important role in Model (2),
for it characterizes the nonlinear relationship between
Energy_Consmp and V7e,. In the estimation for g(), the free
knot spline provides a quite flexible and robust method. It
searches for the optimal number of knots and location of
knots automatically to determine the model based on data-
driven correction in Bayesian term (Denison et al., 1998; Poon
and Wang, 2013). Owing to the merits, a 3-degree free knot
spline was utilized here to achieve better estimation for the
link function.

3 K
VT(x, ~ 20 () VTa, 201(2) (V?a,—m)i,

j=0 1=1

where K is the number of knots, n = (11, ...,nK)T denotes the
location vector of knots, K and m are unknown parameters
that are randomized as random variables, the function u, =
max (0,u), and 61", 6{?) are the coefficients of the spline. By the
methodology, model (2) could be approximated as

K

+202 Vo, - m). +sl, (3)
-1

3
Energy-Consmp; = » _ 05-”(

and it can be rewritten as a linear combination: Energy_
Consmp; = X'B + ¢;, where X; = (Stand,, Stand,, Stands, Degree,,
Degree,, 1, Vo, ..., (VIow), (Vie,—m)3, ..., (Vo — n)3)T, B = (By,...,
Bq +K+L+ 1)T = (ﬂr ’: ’Brgr 0(1) 1) 0(2) 0(2))T‘

In order to identify the correspondmg significant factors
for no matter higher level of energy consumption or lower
level of energy consumption, and compare the differences of
function relationships across various levels, the idea of quantile
regression analysis was introduced to the model. Firstly, note
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Q.(Energy_Consmp) the rth quantile of Energy_Consmp, if it
meets the cumulative probability P(Energy_Consmp < Q.(Energy_
Consmp)) = 7, where P(U) is the probability of the event U.
Secondly, the ALD was designated as the error distribution to
formulate quantile regression for Energy_Consmp that &;~ALD
(0,0,7), with the scalar parameter ¢ > 0, the skewness param-
eter 0 < 7 < 1, and the location parameter u = 0. Critically, the
location parameter is also the tth quantile of the random error
that Q,(¢;)) = u = 0. In terms of properties of ALD, the conditional
tth quantile function of Energy_Consmp; follows

Q. (Energy-Consmp;|X;, V;) = XTB. (4)

By means of the above equation, the contributing factors at
the tth quantile of Energy_Consmp could be captured by r,(7)
and ry4(1), with their effect being measured via o, (1), B.(1).
Correspondingly, the nonparametric link function g.(.) could
be determined by K, m, and B,. For brevity purpose, the
notation tin the parameters will be omitted hereafter. Hence,
given an interested quantile 7, the semi-parametric quantile
regression function of Energy_Consmp; is finally represented by
X!B, and the aim of the study is to achieve it by estimating the
parameters r,, s o, K, n and B.

To characterize the energy consumption models at lower,
median and higher consumption levels, the quantiles = 0.2,
0.5, 0.8 were chosen respectively to investigate. Targeting at the
parameters mentioned above, the posterior inference for them
proceeded by the prior distributions and the data information.
The reversible jump Markov Chain Monte Carlo (RJMCMC)
algorithm (Green, 1995; Lindstrom, 2002; Yu, 2002) was employed
in the model to address the estimation of K. Meanwhile, the
posterior update for B, w, ¢ and £ was implemented via Gibbs
sampler, while r,, 1 and o, were modified through Metropolis-
Hastings (M-H) algorithm. The posterior estimates for them were
extracted from the Markov chain of the parameters which was
generated according to the above.

1.3. Data description

The dataset in the study was derived from the daily records of
a municipal wastewater treatment plant, and there added up
to 363 samples (from 25th December, 2015 to 24th December,
2016) after removing 3 invalid samples.

The descriptive statistics for Energy_Consmp and influenc-
ing factors are reported in Table 1. Comparing the median Q,

A ]

06 J

05 1

Density

03 q

0.1} 1

-1 0 1 2 3 4 5
Energy Consmp (kWh/kg)

Fig. 1 - The histogram and probability density graph of
Energy_Consmp.

with the minimum and maximum, it can be found that the
probability distributions of Energy_Consmp, BOD, COD and SS
tend to be right-skewed with fat right tail, and all of them
suffer outliers, which indicates that there might exist severe
water pollution incidents during the period of the records. In
contrast, both pH and Scale vary upon quite small dispersion
without extreme values. In addition, the strange phenomenon
on Chrom that all the quartiles Q;, Q,, Qs equal to 16 mainly
because Chrom just contains three different values {8,16,32} in
the dataset, and 16 accounts for a relatively larger proportion.
For further illustration, the histogram and probability density
graph of Energy_Consmp are presented in Fig. 1. The sharp peak
and heavy right tail of the density graph intuitively corrobo-
rate the conclusion in Table 1.

Table 2 displays the Spearman rank correlation matrix
among Energy_Consmp and influencing factors. It can be
observed that pH and Scale are nearly uncorrelated with other
influencing factors, while BOD, COD, TP, TN and NH3-N are
highly correlated with each other, especially for the groups
of {BOD, COD} and {TN, NH3-N}, the information between the
two factors could be seemed as replaceable. Except for the
weak correlation with pH and Scale, Energy_Consmp appears to
be negatively correlated with all of the other influencing
factors, particularly for BOD and COD. The strongly negative

Table 1 - Descriptive statistics of Energy Consmp and influencing factors.

Energy_Consmp pH BOD COD SS Chrom TP TN NHs-N Scale
Mean 1.16 7.38 88.01 21141 161.40 17.04 371 33.28 24.55 7.64
SD 0.58 0.13 46.68 103.71 111.88 6.11 1.15 8.91 7.04 0.82
Min 0.01 7.00 12.00 50.00 46.00 8.00 1.21 13.30 7.11 0.00
Q1 0.77 7.30 57.00 142.00 96.00 16.00 2.96 26.40 19.20 7.34
Q. 1.06 7.40 79.00 187.00 131.00 16.00 3.70 34.10 24.80 7.63
Qs 1.44 7.50 109.50 250.50 197.00 16.00 4.32 39.70 29.65 7.95
Max 4.08 7.70 354.00 751.00 990.00 32.00 9.10 54.10 41.70 9.52

SD: standard deviation; Min: minimum; Max: maximum; Q;, Q,, Qs: the quartiles, i.e., the 25%, 50% and 75% quantiles respectively.
Energy_Consmp: energy consumption; pH: influent pH; BOD: influent biochemical oxygen demand concentration; COD: influent chemical oxygen
demand concentration; SS: influent suspend solid concentration; Chrom: influent chroma; TP: influent total phosphorus concentration;
TN: influent total nitrogen concentration; NHs-N: influent NH3-N concentration; Scale: treatment scale per day.
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Table 2 - Spearman rank correlation matrix of Energy_Consmp and influencing factors.

Correlation pH BOD COD S5 Chrom TP TN NH5-N Scale Energy_Consmp
pH 1.000 -0.051 -0.024 0.061 -0.045 0.093 -0.064 -0.089 -0.226 0.054
BOD -0.051 1.000 0.892 0.505 0.294 0.649 0.609 0.486 -0.039 -0.867
COD -0.024 0.892 1.000 0.566 0.353 0.714 0.629 0.484 -0.041 -0.962
SS 0.061 0.505 0.566 1.000 0.373 0.493 0.227 0.064 -0.020 -0.533
Chrom -0.045 0.294 0.353 0.373 1.000 0.362 0.176 0.085 0.086 -0.327
TP 0.093 0.649 0.714 0.493 0.362 1.000 0.727 0.625 -0.133 -0.638
TN -0.064 0.609 0.629 0.227 0.176 0.727 1.000 0.893 -0.098 -0.554
NH3-N -0.089 0.486 0.484 0.064 0.085 0.625 0.893 1.000 -0.073 -0.414
Scale -0.226 -0.039 -0.041 -0.020 0.086 -0.133 —-0.098 -0.073 1.000 -0.044
Energy_Consmp 0.054 -0.867 -0.962 -0.533 -0.327 -0.638 -0.554 -0.414 -0.044 1.000

BOD: influent biochemical oxygen demand concentration; COD: influent chemical oxygen demand concentration; SS: influent suspend solid
concentration; Chrom: influent chroma; TP: influent total phosphorus concentration; TN: influent total nitrogen concentration; NH3-N: influent

NH;-N concentration; Scale: treatment scale per day.

correlation between Energy_Consmp and COD is straightfor-
ward that Energy_Consmp measures the energy consumption
in unit COD reduction, therefore the higher the COD, the lower
the Energy_Consmp.

In the dataset, several missing values occurred in COD and
SS, which might cause information loss and undermine the
inference. The imputed data for missing values was generated
from the normal distributions N(COD,c2,p) and N(SS, o),
where §, o3 signify the mean and variance of § accordingly.
At last, Energy_Consmp and all the influencing factors were
standardized to have zero mean and unit deviation for the
purpose of comparing the significance of influencing factors
in a uniform standard.

2. Results and discussion

For different energy consumption levels, the truly contribut-
ing factors and their effect on Energy_Consmp were captured
by virtue of the Bayesian semi-parametric quantile regression
approach, and the proposals for energy saving via adjusting
the key factors were put forward correspondingly.

For practical application purpose, given current value of
Energy_Consmp, its energy consumption level could be roughly
judged according to the following quantiles. Taking the dataset
of the study as an example, the Energy_Consmp that less than
0.73, ie., the 0.2-quantile of {Energy_Consmpi}{-q, could be
considered as the lower level of energy consumption, while

the Energy_Consmp around 1.06 is approximately the median
level of energy consumption. Likewise, the Energy_Consmp that
larger than 1.54, that is, the 0.8-quantile of {Energy_Consmpi}i'- 1,
could symbolize the higher level of energy consumption. In
practical application, the current energy consumption level can
be judged by the above thresholds, and the energy consumption
might decrease via adjusting key factors on the corresponding
level.

Explicitly, in Model (2), X and V could be considered as the
two branches of influencing factors. For the first branch, Stand
and Degree exert linear effect on Energy_Consmp, and the effect
could be directly reflected via 3, while in another branch,
influencing factors affect the Energy_Consmp nonlinearly, with
the effect being analyzed in terms of both o, and g(Va),
that is, the partial derivative 6Energy_Consmp/oV; = a,}g’(VTu,),
j=1, .., 9 1=1, e O Accordingly, the posterior quantile
estimates &, and B, are summarized in Table 3, and the
estimated curve of link function 6 (VTa,) at quantiles 7 = 0.2,
0.5, 0.8 are outlined in Figs. 2-4 respectively. The small
standard deviations in Table 3 imply the stable estimates
and well estimation efficiency.

2.1. Regression analysis at lower energy consumption level

At the quantile 7 = 0.2, the lower level of energy consumption
is closely related to Degree; and Chrom. In detail, Degree; shows
a negative impact on Energy_Consmp as reported in Table 3,
which demonstrates that the Energy_Consmp with the normal

Table 3 - Bayesian quantile estimates for o, 8,. Standard deviations are reported in parentheses.

A A A A A A A A A A A A A A
Ty ry S Ory Ors O Oy Oy O Br, Br, Br, Br, Brs
pH BOD COD SS Chrom TP TN  NHs-N  Scale Stand, Stand, Stands Degree;  Degree,
7=02 0 0 0 0 1 0 0 0 0 0 0 0 -0.1660 0
(0.0572)
T=05 0 0 1 0 0 0 0 0 0 0 0.0933 0.1425 0 0
(0.0248)  (0.0496)
T=08 0 0 0 0 0 0 1 0 0 0 0 0 0 0.2002
(0.0610)

BOD: influent biochemical oxygen demand concentration; COD: influent chemical oxygen demand concentration; SS: influent suspend solid
concentration; Chrom: influent chroma; TP: influent total phosphorus concentration; TN: influent total nitrogen concentration; NHs-N: influent
NH;-N concentration; Scale: treatment scale per day.
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Fig. 2 - Graph of the link function about single-index term at
the 0.2-quantile.

wastewater temperature tends to be less than that with lower
wastewater temperature. The phenomenon accords with the
principle that the proper temperature stimulates the reaction
of microorganism and therefore alleviates the burden of
energy consumption. Meanwhile, Stand is not active in the
model, and the inactiveness manifests that the quality of
treated water might have no obvious effect on the change of
Energy_Consmp in this case.

For the second branch of influencing factors, incorporating
o, in Table 3 and é\(VT(x,) in Fig. 2, it can be found that Chrom is
the unique significant factor, and Energy_Consmp goes up with
it at first, then goes down greatly. The trend signifies that
enhancing the Chrom-rich wastewater (e.g., dyeing mill effluent or
paper mill effluent) might help reduce the energy consumption.
Noteworthily, the graph of @(VTQ,) is a folding line with one

2

Link function g(.)
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Fig. 3 - Graph of the link function about single-index term at
median level.
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Fig. 4 - Graph of the link function about single-index term at
0.8-quantile.

sharp point rather than a smooth curve, the strange performance
is mainly related to the fact that Chrom has only three different
values in the dataset, and hence {(V o, (VI ,))Ji- 1 just has three
different pairs of points in the figure.

2.2. Regression analysis at median energy consumption level

At median energy consumption level, it can be seen in Table 3
that Stand,, Stands are positively contributing to Energy_Consmp,
and Stands exerts slightly larger effect. The result meets the
expectation that the higher quality of treated water demands for
longer hydraulic retention time, and Energy_Consmp increases
consequently. One possible reason for the insignificance of
Stand, is that the samples of Stand, are far less than Stand, and
Stands in the dataset so that the impact of it is not evident.

In another branch, COD plays a prominent role to affect
Energy_Consmp, and as is shown in Fig. 3, the effect of it is
basically negative except for a flat part during the decline. The
reasonability of the result could be confirmed through the
analyses in Table 2 that COD shows high correlation with
most of the influencing factors and could represent principal
information of them, furthermore, COD is negatively corre-
lated with Energy Consmp on the basis of Spearman rank
correlation. Compared with the analyses in Table 2, the
proposed approach depicts a more detailed and more clear
trend for the effect of COD on Energy_Consmp. In addition, the
result also implies that the COD-rich wastewater (e.g., starch
mill effluent, dyeing mill effluent, industrial effluent and bean
products effluent) tends to cut down Energy_Consmp, or at least
it would not aggravate the burden of energy consumption.

2.3. Regression analysis at higher energy consumption level
At the quantile r = 0.8, the higher level of energy consumption

most likely results from the factors Degree, and TN. Detailedly,
Degree, is apt to increase the Energy_Consmp, with the indication
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that the relatively high temperature may hinder the reaction of
microorganism and lead to the rise of Energy_Consmp. Hence,
keeping appropriate water temperature is crucial in wastewater
treatment.

For another significant factor, TN is similar to COD as reflected
in Table 2 that it covers much information of other influencing
factors. However, different from the explicitly negative correla-
tion in Table 2, the effect of TN on Energy_Consmp is actually
complex rather than simply negative. Specifically, in light of
the @(VToc,) in Fig. 4, Energy_Consmp decreases with TN at first,
then it begins to increase after TN amounting to a certain value,
which illustrates that the TN-rich wastewater (e.g., ammonia
plant effluent, pesticide wastewater) cannot guarantee the
reduction of Energy_Consmp, on the contrary, TN needs to be
controlled within a rational range to avoid the case of energy
intensive. The outcome also embodies the comprehensive
perspective of the proposed approach to analyze the effect of
influencing factors.

Note that pH and Scale perform inactively in all the three
energy consumption levels. On one hand, it is consistent with
the report in Table 2 that both of them appears uncorrelated
with Energy_Consmp and would not be responsible for the
variation of Energy_Consmp. On the other hand, a more likely
reason, the dispersion of pH and Scale in the dataset is quite
small so that the samples cannot represent the population,
and Energy_Consmp is consequently not sensitive to them.

Concluding from the above analyses, the normal temper-
ature of influent wastewater is important to the lower level of
energy consumption. And for median level of energy con-
sumption, it is proposed to increase the COD-rich wastewater,
while for higher level of energy consumption, the TN-rich
wastewater is preferably to be controlled.

3. Conclusions

A Bayesian semi-parametric quantile regression approach
was proposed in the paper to address the energy consumption
modeling in biochemical wastewater treatment. The energy
consumption model was fitted using a semi-parametric PLSIM,
and the nonparametric link function was approximated via free
knot spline. By means of the binary indicator variables, the
contributing factors that truly affect the energy consumption
were identified, and with the ALD distributed random errors,
the models for lower, median and higher levels of energy
consumption were formulated respectively.

Based on the results, Chrom and Degree,; acted as the deter-
minative factors for the lower level of energy consumption,
and the normal temperature of wastewater contributed to the
reduction of energy consumption, while Chrom-rich wastewa-
ter also appeared helpful. At median consumption level, the
higher quality of treated water led to the increase of energy
consumption, while COD-rich wastewater tended to cut down
it. The TN-rich wastewater and the relatively high tempera-
ture of wastewater were the major causes of higher level of
energy consumption, and it was necessary to control the
TN-rich wastewater and lower the water temperature to avoid
excessive energy consumption.

Itis noteworthy that the proposed approach was illustrated
via a specific treatment plant, and therefore the analyses and

suggestions in Section 2 mainly targeted at that plant and
cannot be referred as a general conclusion. Similarly, the
approach could be applied to other interested treatment
plants, and the proposals for energy saving can be summa-
rized after identifying the significant factors and their effect
on energy consumption. Conclusively, the proposed ap-
proach facilitated systematic and robust energy consumption
models to guide the energy saving in biochemical wastewater
treatment.
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