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Peroxyacyl nitrates (PANs) are important secondary pollutants in ground-level atmosphere.
Accurate prediction of atmospheric pollutant concentrations is crucial to guide effective
precautions for before and during specific pollution events. In this study, four models based
on the back-propagation (BP) artificial neural network (ANN) and multiple linear regression
(MLR) methods were used to predict the hourly average PAN concentrations at Peking
University, Beijing, in 2014. The model inputs were atmospheric pollutant data and
meteorological parameters. Model 3 using a BP-ANN based on the original variables
achieved the best prediction results among the four models, with a correlation coefficient
(R) of 0.7089, mean bias error of −0.0043 ppb, mean absolute error of 0.4836 ppb, root mean
squared error of 0.5320 ppb, and Willmott's index of agreement of 0.8214. Based on a
comparison of the performance indices of the MLR and BP-ANN models, we concluded that
the BP-ANN model was able to capture the highly non-linear relationships between PAN
concentration and the conventional atmospheric pollutant and meteorological parameters,
providing more accurate results than the traditional MLR models did, with a markedly
higher goodness of R. The selected meteorological and atmospheric pollutant parameters
described a sufficient amount of PAN variation, and thus provided satisfactory prediction
results. More specifically, the BP-ANN model performed very well for capturing the
variation pattern when PAN concentrations were low. The findings of this study address
some of the existing knowledge gaps in this research field and provide a theoretical basis
for future regional air pollution control.
© 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Peroxyacyl nitrates (PANs, RC(O)OONO2) are important sec-
ondary pollutants in the ground-level atmosphere where
there are no direct anthropogenic emissions. Among PANs,
peroxyacetyl nitrate (PAN, R = CH3) is the most important,
ang).
this work.

o-Environmental Science
with the highest atmospheric concentrations (Seinfeld and
Pandis, 2012). Studies of PANs have gained widespread
attention since the discovery of PAN in photochemical smog
in the Los Angeles area in the 1950s (Stephens et al., 1956).
Relevant monitoring performed around the world during
recent decades has shown that PANs are ubiquitous in the
s, Chinese Academy of Sciences. Published by Elsevier B.V.
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global atmosphere (Singh et al., 1986; Payne et al., 2013;
Fischer et al., 2014). Related studies have also shown that daily
exposure to high concentrations of PAN may have adverse
effects on plant growth and human health (Vyskocil et al.,
1998). Such impacts imply the importance of ground-level air
pollution forecasting as an indispensable warning system to
enable effective preparation in the case of severe episodes
(Bishop, 1995). However, current studies of PANs are mainly
focused on local monitoring data derived from scattered
monitoring sites and relatively short monitoring periods
(Zhang et al., 2009; Gao et al., 2014; Zhang et al., 2014; Zhang
et al., 2015; Zhang et al., 2017). In previous studies, due to the
limitation of human and financial resources, the monitoring
sites are mainly located in megacities and the monitoring
periods are generally less than 3 months. Thus, the results of
these studies reflect only the local concentration levels at a
specific time. There have been few studies to date on the
patterns of variation and prediction of ambient PAN concen-
tration in China.

The formation of PANs requires a series of complex
photochemical reactions that not only involve NOx and
different VOCs but also are closely related to meteorological
parameters such as temperature and wind speed (Kleindienst,
1994; Fischer et al., 2014). Accordingly, the numerical predic-
tion of ant in the regression resultsons requires a complex
systematic procedure due to the multivariate, strong coupling
and nonlinear characteristics involved (Lei et al., 1998).
Therefore, an appropriate modeling approach that can deal
with the above-mentioned problems is necessary to obtain
reliable forecasting outcomes. In current studies related to the
prediction of atmospheric pollutant concentrations, the most
commonly used methods include gray forecast models,
multiple statistical analysis theory, the fuzzy recognition
method, and artificial neural networks (ANNs). Among these
methods, ANN models appear to offer an effective mathe-
matical analysis tool because they have been found to
perform remarkably well in capturing complex interactions
and dealing with nonlinear problems (Baawain et al., 2007).
Gardner and Dorling (1998) summed up the application of
ANN models in atmospheric science, dividing it into three
main categories: prediction, function approximation, and
pattern classification. Several previous studies have used
ANN models to successfully predict ground-level air pollution
levels, assessing O3 (Chattopadhyay and Chattopadhyay,
2012; Faris et al., 2014; Pires et al., 2012), PM10 (de Gennaro et
al., 2013; Zhang et al., 2013), NO2 (Russo et al., 2013), and SO2
Table 1 – Final data format of monitoring data.

Variables

Peroxyacetyl nitrate hourly average concentration
Carbon monoxide hourly average concentration
Sulfur dioxide hourly average concentration
Nitric oxide hourly average concentration
Nitrogen dioxide hourly average concentration
Ozone hourly average concentration
PM2.5 hourly average concentration
Temperature
Relative humidity
Wind speed
Wind direction
(Akkoyunlu et al., 2010; Ozkan et al., 2010; Sánchez et al.,
2013). However, the prediction of PAN concentrations has not
previously been studied.

In this study, the PAN concentrations at Peking University
(PKU), Beijing, were continuously monitored from March to
July 2014. Based on the monitoring results, the variations in
PAN concentration were analyzed and summarized. ANN and
multiple linear regression (MLR) methods were used to predict
the hourly average PAN concentrations. The model inputs
were atmospheric pollutant data (PAN, CO, SO2, NO, NO2, O3,
and PM2.5) and meteorological parameters [temperature
(TEMP), relative humidity (RH), wind speed (WS), and wind
direction (WD)]. Different prediction models were evaluated
based on the performance indices when compared with the
actual monitoring data. This study successfully used conven-
tional atmospheric pollutants and meteorological parameters
to predict PAN concentrations, addressing existing gaps in
this research field and providing a theoretical basis for future
regional air pollution control.
1. Methods and materials

1.1. Data collection and preprocessing

The ambient air quality data used in this study were collected
from 1 March to 10 July 2014. The monitoring site (39.99°N,
116.31°E) was located at Peking University (PKU) at a height of
25 m above ground level. PKU is located in Zhongguancun
Street, which is one of the busiest areas in Beijing, with large
crowds and heavy traffic. There is no major source of
pollution near this site.

Monitoring data included concentrations of PAN and other
conventional atmospheric pollutants (CO, SO2, NO, NO2, O3,
PM2.5), as well as meteorological parameters (TEMP, RH, WS,
and WD). The instrument detection limit was 5–10 pptv, and
the detection time resolution was 5 min. The observation data
were processed into an hourly format for further analysis, and
the entire valid data set consisted of 2771 hr of observations.
The final data format is shown in Table 1.

1.2. Prediction of PAN concentrations

Different categories of methods exist for predicting atmo-
spheric pollutant (e.g., O3, PM2.5, PM10, etc.) concentrations.
Among these methods, the statistical method has the
Variable symbols Unit

PAN ppb
CO ppb
SO2 ppb
NO ppb
NO2 ppb
O3 ppb
PM2.5 mg/m3

TEMP °C
RH %
WS °
WD m/sec
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advantage of high accuracy for short-term prediction. In this
study, the MLR method and an ANN model were used to
predict the PAN concentrations in Beijing. The multiple
regression analysis, principal component analysis, and ANN
modeling were performed using the Statistical Product and
Service Solutions (SPSS) software program.

1.2.1. Multiple linear regression
Multiple statistical analysis theory considers the correlation
between environmental factors and atmospheric pollutant
concentrations. Thus, this method can determine the rela-
tionship between elements in the forecast model and achieve
an effective quantitative prediction (Huang, 1991). Several
previous studies have used ANN models to successfully make
a prediction about ground-level air pollution levels, including
O3, PM2.5, PM10 et al. Among these studies, several of them (Cai
et al., 2009; Grivas and Chaloulakou, 2006; Sousa et al., 2006;
Sousa et al., 2007) also use MLR as a comparison with the ANN
methods in order to verify the outcome of ANN methods. As
this is a preliminary study to apply ANN model on the
prediction of the concentration of PANs, we believe that the
MLR method can be an effective way to test the ANN results.

Therefore, in this study, we used the MLRmethod to depict
the relationship between the input parameters and the
prediction values. In contrast to the unitary linear regression
method, MLR is used to reveal the interdependencies between
one dependent variable Y and multiple independent variables
x1, x2... xm (independent of one another). The established
regression model is represented by Eq. (1):

yt ¼ β0 þ β1xt1 þ⋯þ βmxtm þ εt t ¼ 1; 2;⋯;nð Þ
E εtð Þ ¼ 0;Var εtð Þ ¼ σ2;Cov εi; ε j

� � ¼ 0 if i≠ jð Þ
or εt∼N 0;σ2� �

; t ¼ 1; 2;⋯;nð Þ

8<
: ð1Þ

1.2.2. Artificial neural network
An ANN is a computing system inspired by biological neural
networks, and is composed of a number of simple and highly
interconnected processing elements that process information
by their dynamic state response to external inputs (Nelson
and Illingworth, 1991).

A back-propagation (BP) ANN is a multi-layer feed-forward
network using an error back propagation algorithm, which is
one of the most widely used algorithms in ANN models
(Baawain and Al-Serihi, 2014). A BP-ANN is usually composed
of an input layer, one or more hidden layers, and an output
layer. All layers are made up of a large number of simple non-
connected ‘neurons,’ and every two ‘neurons’ of each end-to-
end layer are connected. Different layers are connected by
specific connection weights based on the training algorithm.
The neurons of the input layer transmit the received data to
the hidden layer, and the neurons of the hidden and output
layers calculate their respective inputs via a non-linear
transfer function. The ANN system ‘learns’ through these
pairs of input and output data, and finally forms nonlinear
mapping that describes the relationship between the input
and output variables.

The learning process of the BP-ANN is shown in Fig. 1. BP
learning starts with all weights initialized randomly. Weights
are then modified as the algorithm progresses until steady-
state values are reached. An input vector, given as a signal to
the network, passes from the input layer to the hidden layer.
After being processed by the hidden layer, the vector then
passes to the output layer, where an output is produced. This
is a feed-forward propagation process. Then, the error
between the output and the actual value is calculated and
propagated backward along the network to correct the
connection weigh. This is a back-propagation process. Finally,
another input is given, and the above learning processes are
repeated. The ANN continues the learning process until the
error minimization criteria are reached.

The number of neurons in different layers were decided
due to various principles. For the neurons in the input layer,
the number of neurons comprising in the input layer should
be completely and uniquely determined by the training
dataset we have, which means the number of neurons in the
input layer should be equal to the number of features
(columns) in the data. In our case, as we generally understand
the generatemechanism of PANs, 10 parameters (CO, SO2, NO,
NO2, O3, PM2.5, TEMP, RH,WS, andWD), which were thought to
be related to the generation of PANs, are included in our data
set. That is why there were 10 neurons in the input layer of
model 3. For the neurons in output layer, the number of
neurons would vary with the problems need to be solved.
While for the neurons in hidden layer, there is no hard-and-
fast rule for it. The number is often determined based on
empirical formulas or trying & testing. Too few nodes will lead
to high error for the system as the predictive factors might be
too complex for a small number of nodes to capture. And too
many nodes will overfit to the training data and not
generalize well. Based on some previous research, we thought
that the number of neurons in hidden layer should be
somewhere between the size of the input and output layer
and the exact number was decided by the empirical formula
from Huang's Paper (Huang et al., 2010):

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:43mnþ 0:12n2 þ 2:54mþ 0:77nþ 0:35

p
þ 0:51 ð2Þ

The sample is subdivided into ‘training,’ ‘validation,’ and
‘test’ sets. According to the definitions of Ripley (1996), a
training set is a set of examples used for learning to fit the
parameters (i.e., weights) of the classifier; a validation set is a
set of examples used to tune the parameters (i.e., architecture,
not weights) of a classifier, e.g., to choose the number of
hidden units in a neural network; and a test set is a set of
examples used only to assess the performance (generaliza-
tion) of a fully specified classifier. However, in general, when
it comes to practical applications, the data set is subdivided
into only a training set and a test set. In this study, a feed-
forward BP multi-layer preceptor (MLP) neural network
architecture was selected for modeling the concentrations,
which meant that there was no need for the validation set.
Thus, we chose to subdivide the prepared data set into two
subsets with a training set size of 2699 and a test set size of 72.

1.3. Model evaluation criteria

To evaluate and compare the forecast models, several
commonly used performance indices were chosen to describe
the performance of the models (Chaloulakou et al., 2003a;
Chaloulakou et al., 2003b; Lu et al., 2004), which are shown in
Table 2.



Fig. 1 – Learning process of the BP-ANN.
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In this study, the correlation coefficient (R), mean bias
error (MBE), mean absolute error (MAE), root mean squared
error (RMSE), and Willmott's index of agreement (d2) were
selected to comprehensively evaluate the model
performance.
2. Results and discussion

2.1. Variation pattern of PAN concentrations based on the
monitoring data

Fig. 2 shows the continuous monitoring data from March to
July 2014. The concentrations of CO, SO2, NO, and PM2.5 in
Table 2 – Performance indices of different models.

Performance indices Calcul

Correlation coefficient (R)
R ¼

ffiffiffiffiffiffiffiPn

i¼

vuut

Mean bias error (MBE) MBE ¼ 1
n
P

Mean absolute error (MAE) MAE ¼ 1
n
P

Root mean squared error (RMSE) RMSE ¼
r

Willmott's Index of Agreement (d2) d2 ¼ 1−
½
P

spring were higher than those in summer, whereas the
concentrations of O3 and PAN were higher in summer than
in spring. However, high PAN concentrations were also
observed during the Spring Festival (25 March).

2.2. PAN concentration predictions

2.2.1. MLR prediction model
After stepwise regression of all 10 input variables, the PAN
concentration prediction model obtained using MLR based on
the original variables, denoted as Model 1, was represented
by:

PAN ¼ 0:147þ 0:011PM2:5 þ 0:037O3 þ 0:042NO2−0:051TEMP
−0:010NO−0:0491COþ 0:19SO2−0:057WS−0:001WD ð3Þ

Model 1 preserved nine input variables via the stepwise
regression method, and the variable RH was negligible
because it was not significant in the regression results.
Model 1 shows that the PAN concentration was influenced
by various pollutants and meteorological parameters. Among
these, the closest correlation was between PAN concentration
and SO2 concentration. SO2, NO2, O3, and PM2.5 concentration
were positively correlated with PAN concentration, whereas
CO, NO, TEMP, WS and WD were negatively correlated with
PAN concentration.

Based on the 10 input variables, to rule out significant
relationships among the original variables, the corresponding
10 principal components were calculated, as shown in Table 3.
After stepwise regression of all 10 principal components, the
PAN concentration prediction model obtained using MLR
based on the principal components, denoted as Model 2, was
represented by:

PAN ¼ 1:701þ 0:704PC2 þ 0:422PC3 þ 0:368PC10−0:265PC8
−0:235PC6 þ 0:213PC1 þ 0:191PC4−0:153PC9 þ 0:107PC5−0:044PC7

ð4Þ

2.2.2. BP-ANN prediction model
To predict the PAN concentrations, a 10–6-1 BP-ANN model,
denoted as Model 3, was constructed with an input layer with
10 ‘neurons,’ a hidden layer with 6 ‘neurons,’ and an output
layer with the PAN concentration as output. The hyperbolic
transfer function [shown in eq.(5)], was selected in this model.
The structure of Model 3 and the comparison between the
ation method Evaluation criterion
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ðYi−YiÞ

2
‐
Pn

i¼1
ðYi−Y

_

iÞ
2

Pn

i¼1
ðYi−YiÞ

2

[0,1], 1 is optimal

n
i¼1ðY

_

i−YiÞ (−∞,+∞), 0 is optimal

n
i¼1 jY

_

i−Yij [0,+∞], 0 is optimalffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
Pn

i¼1 ðYi−Y
_

iÞ
2

[0,+∞], 0 is optimal

½
Pn

i¼1
jŶi−Yi j

2
�

n

i¼1
ðjŶi−Yi jþjYi−Yi jÞ

2
�

[0,1], 1 is optimal



Fig. 2 – Continuous monitoring data from March to July 2014.
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monitored and predicted values of PAN concentrations are
shown in Fig. 3.

f xð Þ ¼ ex þ e−x

1þ e−x
ð5Þ

The comparison of the predicted values from the model
and the actual values is shown in the right-hand panel of Fig.
3. It can be seen that Model 3 performed relatively well, and
the predicted values were close to the actual values. The
predicted concentration fitting line was close to the expected
1:1 line, and the residuals were small and relatively
concentrated.

For any prediction model, including ANN modeling, the
number and selection of appropriate input variables are very
important (Karacan, 2007; Karacan, 2008). The aim of principal
component analysis is to reduce the dimensionality of data
sets that contain a large number of interrelated variables,
while retaining as much as possible of the variation present in
the data set. In this study, principal components were used to
simplify the BP-ANNmodel, andModel 4was constructed. We



Table 3 – Principle components constructed from the original variables.

Original variable Principle component

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

CO 0.838 0.247 0.273 0.185 −0.074 0.175 −0.105 0.101 −0.196 −0.178
SO2 0.707 0.056 0.596 0.011 −0.107 0.109 −0.242 0.086 0.211 0.085
NO 0.706 −0.245 −0.104 0.001 0.442 0.424 0.226 −0.050 0.040 0.027
NO2 0.853 0.046 −0.113 −0.068 0.252 −0.334 −0.008 0.200 −0.118 0.157
PM2.5 0.596 0.542 0.173 0.364 0.071 −0.285 0.191 −0.245 0.073 −0.033
O3 −0.682 0.543 0.275 0.141 0.124 0.216 −0.128 −0.128 −0.144 0.170
TEMP −0.611 0.568 −0.186 0.082 0.430 −0.024 −0.128 0.190 0.116 −0.106
RH 0.281 0.507 −0.626 0.237 −0.375 0.195 0.115 0.130 0.047 0.078
WS −0.628 −0.158 0.556 0.309 −0.043 −0.012 0.348 0.229 −0.006 0.021
WD −0.067 −0.604 −0.243 0.719 0.076 −0.033 −0.215 −0.022 0.001 0.020
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chose PC1, PC2, PC3, and PC4, which provided 80% of the
accumulated variance contribution, to constitute the four
‘neurons’ of the input layer. The hidden layer comprised three
‘neurons,’ and the output of the output layer was the PAN
concentration. The hyperbolic transfer function was also
selected in this model. The structure of Model 4 and the
comparison between the monitored and predicted values of
PAN concentrations are shown in Fig. 4.

A comparison of the predicted values fromModel 4 and the
actual values is shown in the right-hand panel of Fig. 4. For
the low values, the predicted values were close to the actual
values, and the residual values were comparatively small and
concentrated. However, for the high values, the difference
PAN

Output layerHidden layerInput layer

WD

WS

RH

TEMP

O
3

PM
2.5

NO
2

NO

SO
2

CO

Fig. 3 – Structure of Model 3 (left) and comparison between mo
between the actual and predicted values was very large, and
the residuals were also large and scattered. Compared with
Model 3, the goodness of the Model 4 declined. This was
mainly due to the selection of the four principal components
as the model input, which resulted in a lack of information
and reduced the prediction accuracy.

The performance indices of the four forecast models are
shown in Table 4 to compare the prediction results of the
different models. The R-values of the four models were all
<0.8, indicating that none of the models was able to
completely capture the variation pattern of PAN concentra-
tion. However, comparing all four models, the performance
indices of Model 3 were superior to those of the other three
-2

0

2

4

6

8

10

0 2

Predicted Value

R
e
s
i
d
u
a
l

4 6 8

0

2

4

6

8

0 2

PAN

P
r
e
d
i
c
t
e
d
 
V
a
l
u
e

4 6 8

nitored and predicted values of PAN concentrations (right).



-2.5

0 1 2 3

Predicted Value

PAN

Output layerHidden layerInput layer

PC
4

PC
3

PC
2

PC
1

R
e
s
i
d
u
a
l

0

1

2

3

4

5

6

0 2 4 6 8

PAN

P
r
e
d
i
c
t
e
d
 
V
a
l
u
e

4 5 6

0.0

2.5

5.0

7.5

Fig. 4 – Structure of Model 4 (left) and comparison between monitored and predicted values of PAN concentrations (right).

195J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 7 7 ( 2 0 1 9 ) 1 8 9 – 1 9 7
models, and the prediction results from this model were
closer to the actual values. Although Model 4 was also based
on an ANN, the model input was chosen as the four principal
components, which missed important information, rendering
the model's performance even worse than those of Models 1
and 2, which were based on the MLR method.

To better elucidate the prediction performance of the
different models, we performed a time-series analysis of the
prediction results. The chosen time period was 8–10 July 2014
(3 d, 72 h), a period of high PAN concentrations. The time-
series analysis between the monitored and predicted values
of PAN concentration is shown in Fig. 5. Model 3, obtained
using a BP-ANN based on the original variables, achieved the
best prediction results among the four models; the prediction
accuracies of Models 1 to 4 were 31, 33, 54, and 25%,
respectively. Model 3 performed relatively poorly during
high-pollution periods, and it was difficult for the model to
keep up with the changes in the actual values; however, the
prediction results were accurate for most of the period. The
reasons for the misfits in the model may be caused by the
reasons below: First, the training dataset may be still not large
Table 4 – Performance indices of different models.

R MBE MAE RMSE d2

Model 1 0.5091 −0.0030 0.4809 0.6492 0.7844
Model 2 0.5085 −0.0043 0.4836 0.6495 0.7837
Model 3 0.7089 0.0958 0.4058 0.5320 0.8214
Model 4 0.3488 0.3361 0.5757 0.7069 0.7334
enough for the ANN to capture the variation rule of PAN
concentration which may affect the prediction accuracy.
Second, the test set in our study is relatively small which
may increase rate of misfits. To solve this problem, larger
database of PAN concentration and related parameters is
needed in the future. However, it should be noticed that no
matter how large the dataset is, the difference between
modeled and monitoring results will still be exist due to the
unavoidable errors. MLR Models 1 and 2, the models only
predicted the average variation trend of the PAN concentra-
tion, and the predicted values also did not keep up with the
changes in PAN concentration. For extreme values, both
models performed poorly, and both produced negative values
in the prediction of low values, whereas the BP-ANN model
was able to adequately capture this variation pattern and
achieved better prediction results.
3. Conclusions

This study investigated the potential use of a systematic
approach to develop ANN models for predicting ground-level
PAN concentrations at a specific receptor area in Beijing, in
2014. We determined the PAN concentrations according to
their relationships with conventional atmospheric pollutants
and meteorological conditions. Four models based on the BP-
ANN and MLR methods were used to predict the hourly
average PAN concentrations. Based on a comparison of the
performance indices of the MLR and BP-ANN models, we
concluded that the BP-ANN model adequately captured the



Fig. 5 – Time-series analysis of different models.
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highly non-linear relationships between the PAN concentra-
tion and the conventional atmospheric pollutant and meteo-
rological parameters, and provided superior results compared
to the traditional MLR models, with much higher goodness of
R. The selected meteorological and atmospheric pollutant
parameters captured a sufficient amount of the PAN varia-
tion, and thus provided comparatively satisfactory prediction
results. More specifically, the BP-ANN model performed very
well for capturing the variation pattern when PAN concentra-
tions were low. The findings of this study address existing
gaps in this research field and provide a theoretical basis for
future regional air pollution control.
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