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Simultaneous and continuous measurements of visibility, meteorological parameters and
air pollutants were carried out at a suburban site in Ningbo from June 1, 2013 to May 31,
2015. The characteristics of visibility and their relationships with air pollutants and
meteorological factors were investigated using multiple statistical methods. Daily visibility
ranged from 0.6 to 34.1 km, with a mean value of 11.8 km. During the 2-year experiment,
43.4% of daily visibility was found to be less than 10.0 km and only 9.2% was greater than
20.0 km. Visibility was lower in winter with a frequency of 53.4% in the range of 0.0–5.0 km.
Annual visibility had an obvious diurnal variation, with the lowest and highest visibility
being 7.5 km at approximately 06:00 local time and 15.6 km at approximately 14:00 local
time, respectively. Multiple correspondence analysis (MCA) indicated that the different
ranges of visibility were significantly affected by different levels of pollutants and
meteorological conditions. Based on the analyses, visibility was found to be an exponential
function of PM2.5 concentrations within a certain range of relative humidity. Thus, non-
linear models combining multiple linear regressions with exponential regression were
subsequently developed using the data collected from June 2014 to May 2015, and the data
from June 2013 to May 2014 was used to evaluate the performance of the model. It was
demonstrated that the derived models can quantitatively describe the relationships
between visibility, air quality and meteorological parameters in Ningbo.
© 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Horizontal visibility is defined as the greatest distance at
which a black object can be visually identified with unaided
eyesight against a light sky (Wark et al., 1998; Watson, 2002).
The reduction of atmospheric visibility is an important
indicator of deteriorating ambient air quality in the absence
of unusual weather. Visibility degradation has become a
serious environmental issue of public concern in populated
cities and has been reported to have adverse effects on human
health, crop growth and traffic safety (Che et al., 2006). It has
been widely confirmed that the impairment of visibility is
mainly due to the scattering and absorption of visible light by
suspended particles (Chan et al., 1999; Horvath, 1995).

Atmospheric particulate matter (PM) is associated with
both anthropogenic and natural emissions that consist of
minuscule particles of solid or liquid matter, with diameters
ranging from 0.01 to 100 μm. Atmospheric particles can affect
the climate by both direct and indirect radiative forcing
(Charlson et al., 1992; Xu et al., 2002), especially fine aerosols
with aerodynamic diameters of 2.5 μmor less (PM2.5). Particles
of decreasing size will remain suspended in the atmosphere
for longer and subsequently impact the environment over
greater distances. PM2.5, which comprise sulfates, nitrates,
organic and elemental carbon, could effectively scatter or
absorb visible light and thus reduce visibility (Zhang et al.,
2012; Kim et al., 2006; Tan et al., 2009a, 2009b). All these
airborne particles, togetherwith other gaseouspollutants such
as sulfur dioxide (SO2) and nitrogen dioxides (NO2) could
contribute to the increase of haze and lead to a low visual
range (≤10 km). Specifically, the heterogeneous aqueous
transformation from SO2 and NO2 is enhanced during haze
episodes, which probably leads to the remarkable secondary
formation of sulfate and nitrate in fine particles, further
impairing visibility (Wang et al., 2006). In addition to air
pollutants, many meteorological parameters such as relative
humidity (RH), wind speed (WS), wind direction (WD), temper-
ature (T), pressure andprecipitation canalso contribute to light
extinction and degrade air quality (Zhao et al., 2011; Yang et al.,
2007). In haze events, the rapid increase of PM concentrations,
high RH, and low WS, can adversely impact atmospheric
visibility (Tsai 2005; Zhang et al., 2010; Deng et al., 2011). As RH
increases, hygroscopic particles progressively absorb more
moisture, which will increase the scattering cross section of
aerosols and proportionately reduce visibility. Therefore, RH
could directly affect the particles that contribute to visibility
reduction. While other meteorological variables such as WS,
temperature, and pressure have indirect effects on visibility,
they may also affect the concentration of atmospheric
particles due to thermal and mechanical turbulence (Du et al.,
2013). The accumulation and transport of particles are closely
related to the synoptic systems and atmospheric circulations.
Some studies have identified that high atmospheric pressure,
low WS, high RH and low mixing layer height could signifi-
cantly reducevisibility inTaiwanandNanjing (Tsai, 2005;Deng
et al., 2011).

The forecasting and early warning of visibility is not only
important to environment and public health, but also to traffic
control and even military actions. A number of models were
previously developed to describe the correlations between
visibility and air pollution, and continuous efforts have been
made to improve themodels based on themonitoring results of
visibility measurements. Multiple linear regression equations
have been established to investigate the effect of air pollutants
andmeteorological conditions on visibility in Taiwan (Wen and
Yeh, 2010). In addition, different empirical regression models
were developed for visibility in Beijing, Shanghai and Guang-
zhou, with a logarithm of coarse particle concentration used in
the regression analyses (Linet al., 2012; Tsai, 2005). Additionally,
several studieshave suggested thatvisibility is a linear response
to the exponential function of PM2.5 concentrations under a
certain RH range (Cao et al., 2012; Yu et al., 2016; Shen et al.,
2016). All these studies suggested that the impacts of air quality
and other variables on visibility are more complicated than
linearity. However, there is still a lack of research on the
characteristics of visibility in the Ningbo area, and its relation-
ship with air pollutants andmeteorological conditions.

Ningbo, is the second largest city of Zhejiang Province, and
has experienced a severe loss of visibility in recent decades
(Zhang et al., 2012). In this study, visibility was monitored
from June 2013 to May 2015, with the potential relationships
between visibility, air pollutants, andmeteorological variables
being investigated. The objectives of this study were (1) to
characterize the temporal variations of visibility in the suburb
of Ningbo; (2) to identify the relationships between classified
visibility and other parameters using multiple correspon-
dence analysis (MCA); (3) to provide new knowledge for
improving visibility prediction in the Ningbo region.

1. Material and methods

1.1. Study area and data source

Ningbo (28°51′–30°33′ N, 120°55′–122°16′ E) is a coastal city of
the Zhejiang Province in Eastern China. The city lies in the
south of Hangzhou Bay and faces the East China Sea with an
area of 9816 km2. The climate conditions of Ningbo are
governed by the sub-tropical monsoon, with prevailing
northwest and southeast winds in winter and summer,
respectively. The annual mean air temperature and precipi-
tation are 16.4 °C and 1480 mm, respectively. Annual mean air
temperature reaches its maximum (28.0 °C) in July and
minimum (4.7 °C) in January. During the whole year, approx-
imately 60% of the annual mean precipitation occurs from
May to September. The annualmeanWS is 2–3 m/sec in urban
areas and > 5 m/sec in coastal areas.

Ningbo is one of the most highly urbanized and industrial-
ized cities in the Yangtze River Delta (YRD) region and had a
population of 7.87 million people and a vehicle fleet of 1.98
million in September 2016. With a rapid urbanization and an
increase in motor vehicle numbers, energy consumption in
Ningbo has increased substantially and haze events have been
frequently observed in recent years (He et al., 2016; Cheng et al.,
2014; Hua et al., 2015). Air pollutant concentrations and
meteorological data from June 1, 2013 to May 31, 2015 at the
Dongqian Lake (DQL) Monitoring Station (29°45′N, 121°37′E)
were collected in this study. The monitoring station is 12 km
away from the city centre ofNingbo and 1.3 km from the largest
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freshwater lake (Dongqian Lake, 22 km2 in area) in the Zhejiang
Province. There are several hills nearby to the west and east.
Many small villages are distributed at the foot of the mountain
less than2 kmtoDQLsite. There isaprovincial roadclose to this
sitewith small factories involved inmechanicalprocessingbuilt
alongside. In recent years, the number of tourists visiting near
the DQL site have also increased.

The DQL station is a part of the national air quality
monitoring network of China, which is under the supervision
of the national Ministry of Environmental Protection (MEP).
Visibility is measured by trained operators using easily
identifiable structures and objects, such as tall buildings,
towers, and mountain ridges, at predetermined distances.
The routine monitoring of air quality using six criteria air
pollutants, i.e. SO2, NO2, carbon monoxide (CO), ozone (O3),
particulate matter with aerodynamic diameters of 10 μm or
less (PM10), PM2.5 at DQL station began in 2012 when the latest
ambient air quality standards of China (GB 3095-2012) were
established. Commercial instruments from Thermo-Fisher
Scientific Inc. (USA) are used to measure gaseous pollutants,
such as O3 (Model 49i), NO2 (Model 42i), CO (Model 48i) and SO2

(Model 43i). PM2.5 and PM10 are measured using a tapered-
element oscillating microbalance sampler (R&P TEOM, 1400).
The TEOM sampler is calibrated regularly using filters with
measured masses. Zero and span checks are made weekly.
Hourly averaged data were used for all analyses in this
study and described by local time (UTC + 8). Meteorological
variables including RH, WS, temperature, and atmospheric
pressure are measured by automatic weather station (WS500-
UMB, Lufft, Germany) at the DQL site.

The Air Quality Index (AQI) has been developed to provide
daily air quality information to the public in China (Zheng et
al., 2014). On February 29, 2012, the MEP of the People's
Republic of China (PRC) approved the technical regulation on
ambient air quality index (GB 3095–2012), which released
PM2.5 values and calculated the AQI instead of the Air
Pollution Index (API). A sub-index is calculated for each
pollutant from a segmented linear function that transforms
ambient concentrations onto a scale from 0 to 500. AQI is
calculated as the sub-index maximum (China's Environmen-
tal Protection Standards, HJ 633-2012). Daily AQI is defined as:

AQI ¼ max AQIPM10;AQIPM2:5;AQISO2;AQINO2;AQICO;AQIO3ð Þð1Þ

where AQIPM10, AQIPM2.5, AQISO2, AQINO2, AQICO and AQIO3

are the partial index of air pollutants PM10, PM2.5, SO2, NO2, CO
and O3, respectively.

AQIp ¼ AQIph−AQIpl
� �

= Chigh−Clow
� �� �� Cp−Clow

� �þAQIpl ð2Þ

where AQIp is the partial index of air pollutant p, Cp is the
daily average concentration of air pollutant p, and Chigh and
Clow are the threshold concentrations of p at air quality grade.
Corresponding to Chigh and Clow, AQIph and AQIpl are the
threshold partial indexes of air pollutant p at air quality grade,
respectively.

1.2. Data analysis

MCA is a data analysis technique for categorical data, used to
detect and represent the underlying structures in a data set
(Hair et al., 1995; Hill and Lewicki, 2007). The results of MCA
can imply that objects within the same category are plotted
close to each other and objects in different categories are
plotted as far apart as possible. This statistical method has
been widely used in sociology, economic statistics, medical
science, but is still limited in environmental science (Van Stan
et al., 2016; Sourial et al., 2010). In addition, all air pollutants
and meteorological data were carried out using a multiple
linear regression (MLR) analysis incorporating a stepwise
method to develop empirical models in Ningbo. The above
statistical analyses were performed using SPSS software
(Version 22.0 for Windows, IBM Inc.)
2. Results and discussion

2.1. Descriptive results

The overall statistical analysis of daily visibility, air pollut-
ants, and meteorological variables during the two years of
observations at DQL station are summarized in Table S1. Day-
to-day variations of visibility, PM2.5 and PM10 are shown in Fig.
S1. From June 1, 2013 to May 31, 2015, the daily average
visibility ranged from 0.6 to 34.1 km, with a mean value of
11.8 km, which was just over the defined threshold for haze
(i.e. visibility <10.0 km), indicating poor air quality over the
study region. The mean PM2.5, PM10, SO2, NO2, CO and O3

concentrations were 42.6, 64.6, 15.0, 28.9, 0.9 and 70.2 μg/m3,
respectively. The average value of AQI, RH, temperature, WS
and surface pressure were 65.6, 73.2%, 17.8 °C, 1.7 m/sec and
1013.0 hPa, respectively.

Visibility impairment mainly resulted from airborne par-
ticulate matter, particularly from PM2.5 (Deng et al., 2014;
Sabetghadam and Ahmadi-Givi 2014). According to the air
quality daily report from MEP, PM2.5 in the atmosphere was
the primary pollutant of concern in Ningbo during the two
years of monitoring (http://www.zhb.gov.cn/hjzl/zghjzkgb/
lnzghjzkgb/). Therefore, the daily variations of PM10 and
PM2.5 were required for analysis during the study period in
DQL station. Fig. S1 shows that the concentrations of PM2.5

and PM10 were generally higher in winter and lower in
summer, and the proportion of PM2.5 in PM10 was relatively
high. During the two years, almost all daily PM2.5 concentra-
tions in winter exceeded the national ambient air quality
standard Grade II (75 μg/m3) (China Environmental Protection
Ministry 2012), revealing severe pollution from fine particles.
In December, 2013, extremely high levels of PM10 and PM2.5

were observed with daily average concentrations of 511 and
389 μg/m3, respectively. At 22:00 on December 6, the hourly
concentrations of PM10 and PM2.5 reached peak values of 707
and 530 μg/m3, respectively. Visibility dramatically decreased
to 0.6 km during this episode, which was the minimum value
measured during the two years. This haze episode was also
observed in the YRD region (Xue et al., 2015).

2.2. Seasonal and diurnal variations of visibility

Fig. 1a shows that 43.4% of the daily visibility was less than
10.0 km during the two years and only 9.2% was greater than
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Fig. 1 – Distribution of frequency of occurrence of daily visibility (a), and diurnal variations of annual and seasonal visibility
(b) at DQL in Ningbo. The shading area shows the standard deviations for the annual data.
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20.0 km, indicating bad air quality in the DQL area. The
maximal frequency (33.4%) of daily visibility was observed in
the range of 5.0–10.0 km. Poor visibility (<5.0 km) often
occurred in winter with a frequency of 53.4%. Daily visibilities
of spring and summer contributed as much as 41.8% and
38.8% to the visual range of 20.0–35.0 km, respectively.

Generally, the average value of AQI decreased with
increasing visibility (Fig. 1). The mean value of AQI for the
visual range of 0–5.0 km was 111.8 (≥100), which indicates the
occurrence of a haze episode under low visibility. The AQI
values were 72.3 and 61.4 for the visual range of 5.0–10.0 km
and 10.0–15.0 km, respectively. This indicates that the local
air was moderately polluted. Good visibility (15.0–35.0 km)
occurred simultaneously with the lowest AQI value (<50), i.e.
when the air quality was good. These data confirmed that the
local air quality had an obvious positive correlation with
visibility (Tsai et al., 2003).

Fig. 1b depicts the diurnal patterns of annual and seasonal
mean visibility in Ningbo. Visibility shows an obvious and
similar diurnal variation throughout four seasons, with a
sharp decrease in early morning, i.e. 06:00–08:00 local time
and a peak in the afternoon, i.e. 14:00–16:00 local time. From
the perspective of the annual average, the lowest and highest
visibility was 7.5 and 15.6 km, respectively. The diurnal
patterns during different seasons were desynchronized,
which is due to differences in weather pattern (i.e. day-night
length, sunrise and sunset time, monsoon etc.) and the
stability of atmospheric boundary layer (ABL) in each season.
For example, the lowest and highest daily levels of visibility in
wintertime are nearly two hours later than in summertime,
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which is mainly attributed to a later sunrise time and smaller
ABL depth. It can also be seen that visibility in spring and
summer was better than in autumn and winter, with winter
more associated with poor visibility and bad air quality.

2.3. Monthly variations of visibility and environmental factors

Monthly variations of visibility, air pollutant concentrations
and meteorological factors were investigated in this study
(Fig. 2). The highest average visibility was observed in July,
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with a value of 16.6 km, and the lowest average visibility was
observed in December with a value of 9.1 km. Different trends
of monthly variations were observed between visibility and
other environmental variables in the study area. It was
noteworthy that the visibility greatly decreased in June,
when the air pollutant concentrations stayed at low levels. It
is well-known that visibility is negatively correlated with air
humidity (Deng et al., 2011). The relatively high level of RH in
June might account for the lower visibility due to the light
scattering and absorption of water vapor.
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Fig. 2 shows that the PM10 and PM2.5 pollution of the study
area was severe. The monthly mass concentrations of PM10

and PM2.5 were in the range of 34.7–139.3 and 23.7–94.9 μg/m3,
respectively. The concentrations of PM10 and PM2.5 were
higher from November to February, while lower from June to
September. The temporal variations of anthropogenic emis-
sions and weather conditions might account for the seasonal
cycle of PM. The average ratio of PM2.5 to PM10 (i.e. PM2.5/PM10)
was 66.6%with a range of 59.3%–72.1%. Remarkably, there was
a negative correlation (−0.47, P < 0.001) between visibility and
PM2.5/PM10 (Table S4), especially in June, July and October. The
high proportions of PM2.5 contained within PM10 in poor
visibility episodes indicated that fine particles could play an
important role in affecting local visibility.

The monthly variations of SO2, NO2 and CO were consis-
tent with PM which could also be confirmed by Pearson
correlation, with higher and lower concentrations being
observed in winter and summer, respectively. All three
gaseous pollutants showed negative correlations with visibil-
ity (Table S4). However, the observed correlation between O3

and visibility can be related to the observation that O3

concentration is typically higher in summer, and positively
associated with temperature (Fig. 2). Two monthly peaks of O3

were observed in May (100.3 μg/m3) and October (71.4 μg/m3)
along with better visibility, while the lowest O3 concentration
(41.4 μg/m3) occurred in December when lower visibility was
observed. The winter minimum O3 level is commonly
observed in mid-latitude locations in the Northern Hemi-
sphere (Tu et al., 2007; Semple et al., 2012; Kumar et al., 2010),
which is mainly due to the relatively weaker photochemical
processes. Good visibility is often related to stronger solar
radiation, which can significantly promote the photochemical
generation of O3 (Pudasainee et al., 2006). This might account
for the good correlation between O3 levels and visibility during
warm seasons in this study.

The variation of RH displayed a summer maximum and
winter minimum, with the highest (82.1%) and lowest (62.3%)
values occurring in June and December, respectively. A
negative correlation (−0.452) between visibility and RH was
observed together with a positive correlation (0.358) between
PM2.5/PM10 and RH (Table S4). With an increase of RH, the
generation of secondary aerosols in fine particles was
enhanced and the hygroscopic components of aerosols such
as sulfate, nitrate and sea salt absorbedmore moisture, which
would increase the scattering cross section of the aerosols and
reduce visibility (Jung et al., 2009).

Obvious monthly variations of surface WS were observed
in the study area, with the highest value (2.4 m/sec) occurring
in July and the lowest value (1.4 m/sec) occurring in November
(Fig. 2). Monthly visibility was positively correlated with WS
during most months, especially in summer (June–August) and
autumn (September–November). Generally, the increase of
WS accelerates the diffusion of dust and pollutants, which
leads to an increase of the visual range. Meanwhile, the
temperature and pressure also expectedly changed between
different months. Temperature was highest (29.5 °C) in July
and lowest (7.0 °C) in December, while the barometric
pressure was highest (1025.9 hPa) in December and lowest
(1005.1 hPa) in July. In general, the variation of visibility was
consistent with that of temperature and opposite to that of
pressure. The correlations between visibility and temperature
and pressuremight be accounted for by the following reasons.
High air temperature and low pressure usually enhance the
dispersal capability of the atmosphere via thermal and
mechanical turbulence, which could promote the improve-
ment of air quality and visibility and inversely, low temper-
ature and high pressure indicate more stable weather
conditions, which would weaken the diffusion of air
pollutants.

2.4. Multiple correspondence analysis of visibility

In MCA, all variables were divided into four categories
according to magnitude (Table S2). Specifically, values 1 to 4
were used to represent small to large, respectively, with the
category indicator added as a prefix for air pollution, and the
suffix describing the meteorological parameter. The corre-
spondence plot and loading factors of visibility and other
environmental variables based on MCA are shown in Fig. 3
and Table S3, respectively. Most of the variance in our data
was accounted for in the analysis with axes 1 and 2 explaining
41.5% and 25.4% variation, respectively. Almost all air
pollutants and meteorological factors were classified into
four quadrants in the plot. The relative distance between
variables and the closeness of points on the plot with respect
to their angle from the origin, and points in the same
quadrant can be used to interpret relationships between
variables (Higgs, 1991; Garson, 2012). The origin on the plot
corresponds to the centroid of each variable. The closer a
variable is to the origin, the closer it is to the average profile.
Fig. 3 shows that V2 and V3 were near to the origin and were
the main visual range during study period. The frequency of
daily visibility appearing in the range of 5.0–15.0 km was
higher than those of others (Fig. 1). In addition, 4NO2, 4CO and
4SO2 were located far from the origin in the first quadrant and
therefore had the greater variability. This implied that the
concentration of air pollutants had the greatest effect
compared to other factors during the poor visual range
(V1 < 5 km). Along dimension 2, it was observed that T4,
1PM2.5, 1CO and WS4 had the most effect, indicating that the
lower concentrations of pollutants except for O3, higher
temperature and higher wind speed had a significant influ-
ence on good visibility (V4 > 15 km).

Fig. 3 illustrates that the first two dimensions accounted
for 66.9% of the total variance and the majority of variables
were clearly discriminated in both dimensions. Along dimen-
sion 1, values of PM2.5, SO2, CO, NO2 and P increased positively
with the direction of dimension 1. Conversely, T, V and WS
decreased in dimension 1. However, onlyWS along dimension
2 changed regularly, which increased in a positive direction.
Generally, dimension 1 could account for most air pollutants,
P, T, V and WS with dimension 2 only additionally explaining
WS. However, the two dimensions in our analysis did not
clearly explain the variations of O3 and RH, and the lower
loading factors of O3 and RH in Table S3 also confirmed this.

The variation of O3 concentrations and RH did not regularly
change with dimension 1 or 2, indicating that further
dimensions may need to be analyzed, i.e. the variation of O3

has unique characteristics. As previously discussed, visibility
was usually positively correlated with O3 concentrations. 4O3
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was closely distributed with V3 rather than V4 in the
correspondence map (Fig. 3), but the concentration of O3 did
not increase with visibility completely. In fact, except for the
lower concentrations of O3, the points of 2O3 to 4O3 were all
closely placed within the third quadrants of Fig. 3, which were
generally associated with a relatively higher temperature and
lower WS. The relatively high WS (WS4 & WS3) in the second
quadrant was unfavorable to the accumulation of O3. These
data also indicated that the production of O3 was not only
affected by visibility, other pollutants and meteorological
parameters, but also factors including solar radiation, which
was not included in this study (Tong et al., 2017). In addition,
the effects of RHonvisibility couldnot be ignored. Thevisibility
was always below 15 km (V1~V3) when RH was higher than
80% (i.e. RH3&RH4),which indicated that visibility remainedat
low values even with low air pollution concentrations.

2.5. Relationship between visibility and other factors

To gain a deeper insight into how relevant factors affect
visibility, Pearson correlations were performed between daily
visibility, air pollutants and meteorological variables (Table
S4). Visibility had significantly negative correlations with
PM2.5 (r = −0.50), CO (r = −0.51), and NO2 (r = −0.47). The
moderate relationship between visibility and PM2.5 was
expected, given the scattering effect of aerosols, especially
fine particles (Charlson et al., 1992; Xu et al., 2002). Visibility
had no direct relationship with CO, but the correlation
coefficient between both variables was a little higher than
that between visibility and PM2.5. This may be because CO is
generated by intensive biomass burning together with incom-
plete combustion from vehicle engines, during which large
quantities of particles would be generated. Fine particles
formed simultaneously with CO could lead to visibility
reduction by scattering and absorbing light radiation (Xue
et al., 2015), which might account for the negative correlation
between visibility and CO. For NO2, there was a weak direct
influence on visibility. However, secondary pollutants such as
nitrate, which is produced by photochemical conversions
from NO2 might play an important role in visibility reduction
(Sabetghadam and Ahmadi-Givi, 2014). Nitrate is the main
water-soluble constituent in PM2.5 and is an important factor
in the increase of PM2.5 concentrations. A strong positive
correlation between NO2 and PM2.5 (r = 0.70, Table S4) was
observed in this study, which might explain why NO2 was
significantly correlated with visibility in the DQL area.

In analyses examining effects of meteorological factors,
visibility showed a significant positive correlation (r = 0.39)
with WS and a negative correlation (r = −0.40) with RH, which
was in accordance with previous research (Deng et al., 2011;
Zhang et al., 2010). High wind speed would promote the
dispersion of pollutants and could reduce air pollutant
concentrations and increase visibility. Also, hygroscopic
aerosols are greatly increased with high RH, which could
cause the increase of PM concentration and extinction
capability, further reducing visibility. As presented in Table
S4, visibility showed a rather weak negative and positive
correlation with air pressure and temperature, respectively.
Air pressure and temperature are both important indicators of
a weather system at a given location, and they have no direct
effect on visibility. The changes of air pressure and temper-
ature could have an impact on the diffusivity of the
atmosphere, and further affect the concentration of air
pollutants. The relatively high correlation between PM2.5 and
temperature (r = −0.45), and between PM2.5 and pressure (r =
0.43) also confirmed this conclusion.

Scatter plots and regression functions of one-year data
(Fig. 4) were applied in this study in order to examine the deep
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Fig. 4 – Relationships between one-year visibility and PM2.5

at DQL (2014.6.1–2015.5.31). Data points are color coded by
RH. All the data are hourly average.

Table 1 – Regression models of visibility under different
RH in DQL, June 2014–May 2015.

Stepwise regression model Correlation
coefficient

N.

V = 23.044 + 27.853*exp.
(−0.04199PM2.5) –0.196RH

RH ≤ 80% 0.816 4247

V = 56.072 + 24.44*exp.
(−0.07128PM2.5) –0.536RH-
0.037O3

80 < RH ≤ 90% 0.671 2049

V = 79.095 + 10.228*exp.
(−0.06571PM2.5)
–0.822RH + 0.033 T

RH > 90% 0.589 1697
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connections between visibility and the two major factors (i.e.
PM2.5 and RH). Fig. 4 and obtained Eq. (3) show the relation-
ships between hourly-averaged visibility and mass concen-
tration of PM2.5 under different RH conditions (Yu et al., 2016).
RH was classified over four ranges: RH ≤ 60%, 60 < RH ≤ 80%,
80 < RH ≤ 90%, and RH > 90%. The visibility decreased expo-
nentially with increasing PM2.5 concentrations in each RH
range.

Visibility ¼ f PM2:5ð Þ

¼

35:65� exp −0:017� PM2:5ð Þ; RH ≤ 60%ð Þ; r ¼ 0:835
28:99� exp −0:020� PM2:5ð Þ; ð60% < RH≤80%Þ; r ¼ 0:732
22:84� exp −0:027� PM2:5ð Þ; 80% < RH≤90%ð Þ; r ¼ 0:599
9:32� exp −0:021� PM2:5ð Þ; RH > 90%ð Þ; r ¼ 0:384

8>>><
>>>:

ð3Þ

Firstly, with the increase of PM2.5 concentration, the visual
range decreased exponentially. Initially, the visibility de-
creased sharply while the PM2.5 concentration increased; but
when PM2.5 concentrations reached a certain level (e.g. above
100 μg/m3), the change in visibility was not sensitive to PM2.5

concentrations any further. Secondly, with the increase of RH,
a lower correlation coefficient between PM2.5 and visibility
was observed. This implied that visibility stayed at a very low
level when RH values were very high (>80%), even with low
PM2.5 concentrations. In this case, a large amount of water
vapor could cover particle surfaces, enhancing the scattering
ability of aerosol and reduce visibility significantly. Thirdly,
the maximum visibility under different RH conditions was
decreased with the increase of RH value (Fig. 4). Eq. (3)
suggested that the maximum visibility was just 9.32 km in
the case of RH > 90%, and this result was consistent with MCA
(Fig. 3).

Obviously, a single parameter regression such as Eq. (3) are
not suitable for the forecasting of visibility at another location
or in another year, which ignores the effects of other
environmental variables, such as NO2, CO, T, WS etc. As
presented in Fig. S2, in which a year's hourly visibility was
predicted with Eq. (3), the regression lines between observed
and simulated visibility significantly deviate from the 1:1
diagonal line. A larger deviation existed when RH > 90%,
indicating a greater contribution of other factors to visibility.
Nevertheless, the above equation further confirmed the
exponential relationship between visibility and PM2.5 under
different RH levels. This finding should form the basis of a
forecasting model of visibility.

2.6. Regression model development and validation

To further develop a brief model for visibility prediction in
Ningbo, it was first assumed that the apparent visibility is the
final result of a combination of factors influencing air
pollution together with meteorological parameters. As
shown in Eq. (4),

Visibility ¼ f PM2:5ð Þ þ f RH;T;NO2;O3⋯ð Þ
¼ f PM2:5ð Þ þ

X
i

ai∙xið Þ þ ε ð4Þ

where xi represents any important factor for visibility, ai is a
linear regression coefficient, and ε is the error term.

Visibility− f PM2:5ð Þ ¼
X
i

ai∙xið Þ þ ε ð5Þ

or

Visibility−
X
i

ai∙xið Þ ¼ f PM2:5ð Þ þ ε ð6Þ

The obtained regression parameters in Eq. (3) were chosen
as initial values of modeling fit. Multiple linear regression was
conducted between the residue of prediction and other
environmental parameters. Datasets with hourly resolution
from June 2014 to May 2015 were used to develop the multiple
nonlinear regression equations. An independent variable was
added into the regression equation by a stepwise procedure
based on importance. It demonstrated that for the first two RH
categories, i.e. RH ≤ 80%, RH is the common factor in addition
to particle concentration for the variation of visibility, then
the regression equations for these two levels were eventually
combined together. After several circles of regression and
iteration, the final modeling results considering main
influencing factors besides PM2.5 and RH within three RH
ranges are listed in Table 1. It showed that the main
contributors to visibility under different RH are different, and
the influence of all variables on visibility was additive.
Specifically, the independent variables in the model are
PM2.5, and RH when RH ≤ 80%, while O3 is the major
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contributor to visibility (aside from PM2.5 and RH) within RH of
80–90%. The importance of O3 in the model requires further
investigation. Results presented in Table 1 also suggested that
temperature can affect visibility when RH > 90%. Likely,
temperature affects visibility by influencing condensation of
water vapor in the atmosphere.

To further verify the validity of the non-linear models
combining exponential andmultiple linear regressions, hourly
observed visibility data from June 2013 to May 2014 were
examined. Fig. 5 presents the simulated results based on
equations in Table 1 vs. the observed visibility. The newly
developed multiple nonlinear model improved the visibility
prediction with generally higher R values compared to those
based on single parameter regressionmodel (Eq. (3)), especially
under high RH (>90%) conditions (Fig. S2). A time series of daily
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Fig. 6 – Time series of daily observed visibility and daily simulat
the observed visibility; V-sim: the simulated visibility).
observed visibility and daily visibility simulated by nonlinear
regressionmodel from June 2013 toMay2014 is plotted in Fig. 6.
There was a high degree of consistency between model-fitted
visibility and observed visibility, indicating that the newly
developed model is a suitable and practical model for
simulating visibility based on air quality in DQL area.
3. Conclusions

Visibility, atmospheric pollutants and meteorological vari-
ables monitored in a suburban area (DQL) of Ningbo from
June 1, 2013 to May 31, 2015 were analyzed in this study.
The characteristics of visibility and its affecting factors
were described in detail using multiple statistical methods.
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Based on these analyses, the following conclusions can be
derived:

The temporal variation of visibility in DQL during the study
period demonstrated notable regional characteristics. The
seasonal pattern of visibility was characterized by higher
levels in spring–summer and lower levels in autumn–winter.
Nearly half of all measurements of visibility were lower than
10 km, indicating poor air quality over the study region.
Visibility displayed an obvious diurnal variation in each
season, with the lowest and highest visibility being 7.5 km at
approximately 06:00, and 15.6 km at approximately 14:00,
respectively.

The results of MCA indicated that good visibility was
always associated with good meteorological conditions and
low levels of air pollutants, except for O3. The results of MCA
explained 66.9% necessity of the segmented studies of
visibility. Based on the correlation analysis, PM2.5, WS and
relative humidity were found to have significant impacts on
visibility in Ningbo. Also, model equations between visibility,
PM and RH were derived, with visibility decreasing exponen-
tially with increasing PM2.5 concentrations in different RH
ranges. Additionally, the non-linear models combining expo-
nential with multiple linear regressions were developed to
investigate the underlying relationships between visibility, air
quality and meteorological conditions. The main factors
which have the largest influences on visibility change under
different RH ranges. Based on a comparative evaluation, the
model prediction was found to be relatively accurate for this
suburban area.

This study demonstrated that the correlations between
visibility and air pollutants/meteorological parameters are
relatively consistent and it is possible to predict visibility
based on air pollutant concentrations and weather condi-
tions in Ningbo. However, the coefficients and model fitting
of other cities may differ from Ningbo due to variations in
the pollution characteristics and weather conditions. In
order to gain a more precise and generalized model and to
simulate the visibility in other cities (such as in YRD region),
a data set of multiple cities will be considered in our future
work.
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