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a b s t r a c t

Human exposure to contaminants from electronic cigarettes (e-cigarettes) and the associ-

ated health effects are poorly understood. There has been no report on the speciation of

arsenic in e-liquid (solution used for e-cigarettes) and aerosols. We report here determina-

tion of arsenic species in e-liquids and aerosols generated from vaping the e-liquid. Seven-

teen e-liquid samples ofmajor brands, purchased from local andonline stores inCanada and

China, were analyzed for arsenic species using high-performance liquid chromatography

and inductively coupled plasmamass spectrometry. Aerosols condensed from vaping the e-

liquids were also analyzed and compared for arsenic species. Six arsenic species were

detected, including inorganic arsenate (iAsV), arsenite (iAsIII), monomethylarsonic acid

(MMA), and three new arsenic species not reported previously. In e-liquids, iAsIII was

detected in 59%, iAsV in 94%, and MMA in 47% of the samples. In the condensate of aerosols

from vaping the e-liquids, iAsIII was detected in 100%, iAsV in 88%, and MMA in 13% of the

samples. Inorganic arsenic species were predominant in e-liquids and aerosols of e-ciga-

rettes. The concentration of iAsIII in the condensate of aerosols (median 3.27 mg/kg) was

significantly higher than that in the e-liquid (median 1.08 mg/kg) samples. The concentration

of inorganic arsenic in the vaping air was approximately 3.4 mg/m3, which approaches to the

permissible exposure limit (10 mg/m3) set by the United States Occupational Safety and

HealthAdministration (OSHA). According to the Environmental ProtectionAgency’s unit risk

factor (4.3 � 10�3 per mg/m3) for inhalation exposure to inorganic arsenic in the air, the

estimated excess lung cancer risk from lifetime exposure to inorganic arsenic in the e-

cigarette vaping air (3.4 mg/m3), assuming e-cigarette vaping at 1% of the time, is as high as

1.5 � 10�4. These results raise health concerns over the exposure to arsenic from electronic

cigarettes.
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ences. Published by Elsevier B.V.
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Introduction

The popularity of electronic cigarettes (e-cigarettes) has been

booming worldwide since they were first introduced into

market in 2004 (Centers for Disease Control and Prevention

(CDC), 2016; Gentzke et al., 2019, United States Department of

Health and Human Services (HHS), 2016). According to results

from National Youth Tobacco Survey, the prevalence of e-

cigarette use among high school students increased rapidly

from 1.5% in 2011 to 16% in 2015 (CDC, 2017). Though varying

widely in design and appearance, e-cigarettes generally oper-

ate in a similar manner: a solution known as e-liquid is aero-

solized by a heating component, and the generated aerosols

vaped through a mouthpiece whereby the users puff. E-liquid

typically uses propylene glycol and/or glycerine as a basic

ingredient to dissolve nicotine, flavoring chemicals, and other

additives (HHS, 2016). Because these ingredients are simpler

than the mixture chemicals generated by burning tobacco, e-

cigarettes have been regarded as less harmful than the con-

ventional tobacco cigarettes. However, recent studies have

suggestedmany health risks of e-cigarettes, andmany studies

have reported metals, fine and ultrafine particles, volatile

organic compounds (VOCs), aldehydes, carbonyl compounds,

endotoxins, flavoring chemicals, and other additives in the e-

liquids and/or the generated aerosols (Allen et al., 2016; Bekki

et al., 2014; Cheng, 2014; Farsalinos et al., 2015; Fern�andez et

al., 2015; Geiss et al., 2015; Goniewicz et al., 2014; Hess et al.,

2017; Hua et al., 2019; Hutzler et al., 2014; Ingebrethsen et al.,

2012; Jensen et al., 2015; Kamilari et al., 2018; Klager et al.,

2017; Lee et al., 2017, 2019; Melstrom et al., 2017; Pankow et

al., 2017; Scungioa et al., 2018; Williams et al., 2013, 2015,

2019a, 2019b; Zhao et al., 2019).

Several recent studies have reported the presence of

arsenic in e-cigarettes (Mikheev et al., 2016; Beauval et al.,

2016, 2017; Palazzolo et al., 2017; Williams et al., 2017;

Olmedo et al., 2018; Song et al., 2018; Zhao et al., 2019). Beau-

val and co-workers detected on average 1.5 mg/L (2016) and

1.57 mg/L (2017) arsenic in the e-liquids. Mikheev et al. (2016)

found 0.01e1 ng arsenic per mg of particulate matter

captured on filters of e-cigarettes. Williams et al. (2017) re-

ported that for every 10 puffs of disposable e-cigarettes and e-

hookahs, arsenic in the aerosols was in a range of

0.001e0.01 mg. Palazzolo et al. (2017) showed that e-liquids

contained (0.08 ± 0.04) mg/L arsenic and the aerosol generated

from every 15 puffs on an e-cigarette had 0.002 mg arsenic.

Olmedo et al. (2018) found arsenic in 10.7% of e-liquid sam-

ples, with amedian concentration of 26.7 mg/kg; whereas Song

et al. (2018) determined arsenic concentrations in e-liquids

ranging from 0.83 to 3.04 mg/kg.

The assessment of arsenic in e-cigarettes to date has

mainly focused on total arsenic concentration. None of the

previous studies have investigated arsenic species in the e-

cigarettes. The toxicity of arsenic is highly dependent on its

chemical species, varying by several orders of magnitude in

medium lethal dose (LD50) and medium lethal concentration

(LC50) values (Charoensuk et al., 2009; Cullen and Reimer, 1989;

Moe et al., 2016; Naranmandura et al., 2011; Shen et al., 2013;

Styblo et al., 2000). Therefore, an appropriate assessment of

potential health risks of arsenic exposure depends on the

knowledge of the exact arsenic species and the concentrations

of each arsenic species present in the e-liquid and its corre-

sponding aerosol samples.

The aim of the present study was to determine the con-

centrations of arsenic species in e-cigarettes, including e-

liquids and condensed aerosols. E-cigarettes are now in

widespread global distribution through convenience stores,

tobacco stores, pharmacies, and online retailers. The popu-

larity of brands has varied rapidly since manufacturers

continually bring new products to the market (Zhu et al.,

2014). On the basis of the monthly sale and market share

information of e-cigarettes, we selected representative e-

liquids for this study. Seventeen e-liquid samples, which

matched with rechargeable USB-like and tank-type e-ciga-

rette devices, were purchased from local stores and online

retailers in Canada and China. Quantitative results of indi-

vidual arsenic species in these representative e-liquid sam-

ples and their corresponding aerosol samples generated by

vaping the e-liquids provide meaningful information and

enable assessment of potential risks from e-cigarettes. This

study points to the need for careful characterization and

monitoring of toxicologically relevant chemical contami-

nants in e-cigarettes.

1. Material and methods

1.1. Chemicals

Standard solutions of arsenite (iAsIII), arsenate (iAsV), mono-

methylarsonic acid (MMA), dimethylarsinic acid (DMA), and

arsenobetaine (AsB) were prepared from stock solutions of

sodium m-arsenite (Aladdin Inc., China), sodium arsenate

(Sigma-Aldrich, U.S.A), monosodium acid methane arsonate

(Aladdin Inc.), cacodylic acid (Aladdin Inc.), and arsenobetaine

(Yuanye Biology Inc., China), respectively. The concentrations

of arsenic species were determined by an Agilent 7700

inductively coupled plasma mass spectrometer (ICPMS) (Agi-

lent Technologies, U.S.A) and calibrated by a certified refer-

ence material BW30018-1000-N-50 (TMRM Inc., China)

containing 1000mg/L inorganic arsenic.When performing the

calibration, a standard solution (Agilent Technologies), con-

taining 10 mg/mL Bi, Ge, In, Li, Sc, Tb, and Y, was used to test

the performance and stability of ICPMS. Another certified

reference material GSB 07-3171-2014 (HBKC Inc., China) was

used to confirm the accuracy of quantitative analyses. Work-

ing solution was prepared daily. Methanol and ammonium

bicarbonate were purchased from Aladdin Inc. and Sigma-

Aldrich, respectively. A certified reference material CRM

No.18 human urine, was obtained from National Institute for

Environmental Studies, Japan.

1.2. E-cigarette samples

Seventeen e-liquid samples and their detailed information are

listed in Appendix Table S1. In Canada, we selected 2 most

popular brands of rechargeable USB-like e-cigarette devices

and their accompanying e-liquid pod cartridges. These two

brands were chosen based on their high market shares. Apart

from the rechargeable USB-like devices, we obtained 3 brands
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of e-liquid cartridges in 5 flavors for the tank-type devices

from two popular e-cigarette stores in Toronto, Canada. In

China, 3 brands of e-liquid cartridges in 8 flavors for the tank-

type devices were obtained from the largest Chinese online

shopping platform. These online brands were chosen ac-

cording to their monthly sales. The nicotine content in these

e-liquid cartridges ranged from 0 to 5%, as stated on the

packaging. For the rechargeable USB-like devices, the refilling

pods were carefully dissected to get the e-liquid. For the tank-

type devices, the e-liquid was squeezed out from the car-

tridges directly.

1.3. Preparation of aerosol samples

Aerosol samples were generated by vaping 8 e-liquid samples

using the tank-type e-cigarette devices, according to the

method reported in Olmedo et al. (2016) with some modifica-

tions. The condensed aerosol was collected for arsenic speci-

ation analysis. Briefly, a peristaltic pump puffed the e-

cigarette to generate the aerosol. The aerosol was condensed

through a series of plastic tubing and conical pipette tips.

Because the tank-type devices were button-activated and had

to be activated repeatedly right before every puff, we built a

simple apparatus, which repeatedly pushed the button in a

controllable manner to activate repeat puffing. Appendix

Figure S1 shows a photograph of the set-up for the genera-

tion and collection of aerosol samples. Comparing the weight

of the condensed aerosol with theweight of e-liquid vaporized

to generate the aerosol, we found that the recovery of e-liquid

from the aerosol generation and collection process was

89e102% (Appendix A Section S1 and Table S2). Duplicate

experiments were performed with collection of aerosol

condensate (0.2e1mL) generated from of e-liquid. The aerosol

condensate sampleswere analyzed immediately or stored in a

�20 �C freezer for subsequent analyses.

1.4. Arsenic speciation analysis

Speciation of arsenic was conducted using an Agilent 1260

series high-performance liquid chromatography (HPLC) sys-

tem connected with ICPMS. Helium gas was introduced into

the collision/reaction cell of the ICPMS to suppress/minimize

potential isobaric interference caused by ArClþ. Separation of

arsenic specieswas carried out using a strong anion-exchange

column (PRP X110s, Hamilton, USA). Two mobile phases were

used: mobile phase A contained 5% methanol in deionized

water and mobile phase B contained 60 mmol/L ammonium

bicarbonate and 5%methanol in deionizedwater (pH 8.75). For

the gradient elution, the ramping program of mobile phase B

started from 0% and increased to 10% in the first 4 min. Then,

mobile phase B linearly increased to 100% from the 4th min to

the 8th min and returned to 0% in the next 1 min. The column

was allowed to equilibrate in this final mobile phase compo-

sition for 4 min. The flow rate was 2 mL/min for the entire

13 min. The samples were diluted 2-fold with deionized water

and filtered through a 0.45-mm membrane. A 50-mL aliquot of

each sample was injected onto the HPLC column for arsenic

speciation analysis. A typical chromatogram obtained from

the anion-exchange HPLC-ICPMS analysis of 5 arsenic species

is shown in Fig. 1A.

Certified reference material CRM No.18 human urine was

used for quality control and was analyzed in parallel with

samples. Our replicate analyses of CRM No.18 urine showed

the concentration of DMA being 39 ± 4 mg/L, which is consis-

tent with the reference value of 36 ± 9 mg/L DMA. In addition, a

standard mixture (containing 1 mg/L of each arsenic species)

was repeatedly analyzed between every 10 samples, which

showed good stability (CV ¼ 6.0% for AsB, CV ¼ 5.5% for iAsIII,

CV ¼ 5.1% for DMA, CV ¼ 7.7% for MMA, and CV ¼ 8.2% for

iAsV). Calibration solutions were re-run after every 30 sam-

ples. Column recovery was assessed as the ratio of the con-

centrations of arsenic species determined with and without

HPLC separation. It represented the sum of arsenic species

determined using HPLC-ICPMS and the total arsenic concen-

tration in the same sample determined using direct ICPMS

analysis. Our tests from three samples showed that the col-

umn recovery of arsenic species was (89 ± 14)%. The details on

the determination of the recovery of arsenic species from the

aerosol generation and collectoin process were shown in

Appendix A Section S1. The limits of detection (LODs) were

determined using the method of US EPA (2011). Briefly, a

mixture of five arsenic standards (0.05 mg/L of each arsenic

species) was added to a blank e-liquid sample, and this spiked

sample was analyzed repeatedly for seven times using the

HPLC-ICPMS method. Standard deviations from the seven

replicate analyses for each arsenic species, multiplied by the

student’s t value of 3.143 (for n ¼ 7), in combination with

calibration of each arsenic species, gave rise to the LODs for

the 5 arsenic species: 0.01 mg/kg for AsB, 0.02 mg/kg for iAsIII,

0.01 mg/kg for DMA, 0.01 mg/kg for MMA, and 0.37 mg/kg for

Fig. 1 e Chromatograms obtained from anion-exchange

HPLC-ICPMS analyses of (A) 5 arsenic species standard

mixture solution, (B) an e-liquid sample, and (C) an aerosol

condensate sample. The 5 arsenic species standards

included AsB, iAsIII, DMA, MMA, and iAsV. MMA, iAsIII,

iAsV, and three unknown arsenic species (Un1, Un2, and

Un3) were detected in the e-liquid and aerosol condensate

samples.
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iAsV. A solution containing 70% propylene glycol and 30%

glycerol was used as blank matrix and underwent the same

aerosol generating process to evaluate the method blank. The

arsenic species in the method blank were close to the LODs.

Because of the high viscosity of the e-liquid, the actual

volume of e-liquid was difficult to measure. In the present

study, we report the concentration of arsenic in the unit of mg/

kg.

1.5. Concentrations of arsenic species in the vaping air

The concentrations of arsenic species in the aerosol conden-

sate (caerosol, mg/kg) was converted to a gas phase concentra-

tion (cair, mg/m3) using Eq. (1) (Olmedo et al., 2018).

cair ¼ caerosol �maerosol

Vair
¼ caerosol � maersol

Q � t�N
¼ caerosol � b (1)

wheremaerosol (g) is themass of the e-liquid analyzed, Vair (m
3)

is the volume of air in which the e-liquid was totally aero-

solized, Q is the flow rate of the pump, t is the puff time, N is

the number of puffs required to aerosolize the e-liquid, and bis
maerosol
Vair

, the conversion factor between cair and caerosol. The puff

topography used in this experiment was: Q ¼ 250 mL/min,

t¼ 8 sec, inter-puff time S¼ 9 sec. Under the conditions of this

puff topography, the volume of air puffed per minute was

equivalent to that generated by an average slow e-cigarette

user under the following puff conditions: Q ¼ 1 L/min,

t ¼ 4 sec, S ¼ 30 sec (Talih et al., 2016). Approximately 40 puffs

were needed to aerosolize an average of 1 g of e-liquid, pro-

ducing 1.33 � 10�3 m3 aerosol. Thus, b was estimated to be

0.75 kg/m3.

1.6. Statistical analyses

The mean and standard deviation (SD) of concentrations of

arsenic species were reported for each e-liquid and aerosol

sample. Median and interquartile range (IQR) were reported

for each arsenic species. Wilcoxon signed rank test was used

to compare the concentrations of individual arsenic species in

the e-liquid samples with that in the aerosol samples. SPSS

version 20.0 (IBM Corp, Armonk, NY) was used to conduct the

statistical analysis. When necessary, values below the detec-

tion limit were substituted by half of the LOD values.

2. Results and discussion

2.1. Arsenic species detected in e-liquids

Fig. 1B shows a representative chromatogram of arsenic spe-

cies from the HPLC-ICPMS analysis of an e-liquid sample. It

reveals the presence of iAsIII, iAsV, MMA, and three new

arsenic species (Un1, Un2, and Un3) not reported previously.

The concentrations of each of these 6 arsenic species in the 17

e-liquid samples are summarized in Table 1. These results

show that iAsV is present in 94% of samples (16 of 17 samples),

iAsIII in 59% (10 of 17), and MMA in 47% (8 of 17) samples. The

chromatogram also shows the presence of three new arsenic

species: Un1 eluting at a retention time of 1.1 min, Un2 eluting

at 4.6 min, and Un3 eluting at 5.7 min (Fig. 1B). The retention

times of these arsenic species do not match with any of the

known arsenic species for which 20 arsenic standards are

available to us (Cullen et al., 2016). Although the exact

chemical nature of these arsenic species remains to be iden-

tified, these are arsenic-containing compounds because the

ICPMS detection is set for specifically detecting arsenic. Un1 is

detectable in 53% (9 of 17) of samples, Un2 in 82% (14 of 17),

and Un3 in 47% (8 of 17) of the e-liquid samples. We also

considered the determination of DMA and arsenobetaine, but

their concentrations in all 17 e-liquid samples were below the

detection limits of 0.01 mg/kg.

Table 1 e The concentrations (mg/kg, mean ± SD, n ¼ 4) of arsenic species in the e-liquid samples.

Sample No. Un1 iAsIII Un2 Un3 MMA iAsV

1 N.D.* 2.56 ± 0.02 N.D. N.D. N.D. 2.64 ± 0.43

2 0.88 ± 0.03 1.78 ± 0.03 N.D. N.D. 0.94 ± 0.17 8.30 ± 1.17

3 N.D. 1.16 ± 0.22 N.D. N.D. N.D. 2.28 ± 0.49

4 N.D. 1.08 ± 0.02 1.38 ± 0.01 N.D. 1.10 ± 0.03 1.92 ± 0.17

5 N.D. 1.06 ± 0.09 1.36 ± 0.03 N.D. 0.94 ± 0.03 1.86 ± 0.16

6 0.38 ± 0.06 N.D. 0.63 ± 0.05 0.36 ± 0.02 N.D. N.D.

7 0.85 ± 0.01 N.D. 1.47 ± 0.14 0.17 ± 0.01 N.D. 1.76 ± 0.09

8 0.90 ± 0.01 2.19 ± 0.02 1.26 ± 0.01 0.30 ± 0.06 N.D. 1.70 ± 0.23

9 0.53 ± 0.03 1.35 ± 0.02 1.55 ± 0.09 0.36 ± 0.04 0.05 ± 0.01 1.64 ± 0.28

10 N.D. N.D. 1.00 ± 0.04 N.D. 2.28 ± 0.10 3.40 ± 0.23

11 0.66 ± 0.04 N.D. 1.93 ± 0.08 0.35 ± 0.01 N.D. 2.47 ± 0.16

12 0.82 ± 0.03 N.D. 1.23 ± 0.18 0.34 ± 0.03 N.D. 1.71 ± 0.16

13 0.28 ± 0.01 N.D. 0.26 ± 0.01 0.40 ± 0.01 N.D. 2.67 ± 0.09

14 N.D. 2.80 ± 0.09 2.32 ± 0.02 N.D. 1.04 ± 0.03 1.10 ± 0.15

15 N.D. 2.56 ± 0.08 1.20 ± 0.01 N.D. 0.52 ± 0.03 1.62 ± 0.17

16 0.44 ± 0.07 N.D. 0.62 ± 0.03 0.42 ± 0.03 N.D. 0.71 ± 0.09

17 N.D. 4.66 ± 0.05 1.22 ± 0.02 N.D. 0.44 ± 0.02 1.04 ± 0.01

Species Median 0.28 1.08 1.22 N.D. N.D. 1.76

* N.D. denotes below the detection limit (LOD) of 0.01 mg/kg for AsB, 0.02 mg/kg for iAsIII, 0.01 mg/kg for DMA, 0.01 mg/kg for MMA, and 0.37 mg/kg

for iAsV in the e-liquid samples. Un1, Un2, and Un3 were three arsenic species whose chemical structure were not yet identified and eluted at

retention time of 1.1 min, 4.6 min, and 5.7 min, respectively. Their detection limits were set as same as the detection limits of the arsenic

species that had the closest retention time with them.
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2.2. Arsenic species detected in condensates of aerosols

We also determined arsenic species in the condensates of

aerosols that were generated by vaping 8 e-liquid samples. A

representative chromatogram of arsenic species from the

HPLC-ICPMS analysis of a condensed aerosol sample is shown

in Fig. 1C. The same six arsenic species, as detected in the e-

liquid sample (Fig. 1B), are also detectable in the aerosol

samples (Fig. 1C). The concentrations of six arsenic species in

the 8 aerosol samples are summarized in Table 2. These re-

sults show the presence of iAsIII, Un1, and Un2 in 100% sam-

ples (8 of 8), iAsV in 88% (7 of 8), Un3 in 75% (6 of 8) samples,

and MMA in 13% (1 of 8) samples.

The concentrations of arsenic species in the condensates

of aerosols were compared to those in the corresponding

original e-liquids. Table 3 presents themedian, IQR, detectable

ratio, and p-values calculated from the Wilcoxon signed rank

test for each detectable arsenic species. The results show that

after the e-cigarette vaping, the concentrations of iAsIII

(p ¼ 0.012) were significantly higher than those in the original

e-liquid, whereas Un2 (p ¼ 0.012) and Un3 (p ¼ 0.012) in the

aerosol were significantly lower than those in the original e-

liquids. The concentrations of Un1 (p¼ 0.889),MMA (p¼ 0.317),

and iAsV (p ¼ 0.063) had no significant difference between the

samples of aerosols and e-liquids.

2.3. Concentration of arsenic in the vaping air

Using Eq. (1), we estimated the concentrations of arsenic

species in the vaping air generated from aerosolizing e-liquid

samples. The concentrations of iAsIII ranged from 0.38 to 3.45

(median 2.45)mg/m3. The concentrations of iAsV were from

<0.28 to 1.70 (median 0.68)mg/m3. Total concentrations of

inorganic arsenic species (iAsIII and iAsV) ranged from <0.91 to

4.09 (median 3.38) mg/m3. The United States Occupational

Safety and Health Administration (OSHA) instituted a

permissible exposure limit (PEL) at 0.01 mg/m3 (10 mg/m3) for

airborne inorganic arsenic averaged over 8 h in the workplace

(USNIOSH, 1988). Our study indicates that e-cigarette smokers

could inhale inorganic arsenic species (iAsIII and iAsV) at an

inhalation concentration as high as 4 mg/m3, which is nearly

half of the permissible exposure limit (10 mg/m3) set by OSHA.

2.4. Estimate of cancer risk from inhalation exposure to
arsenic

Inhalation exposure to arsenic has been positively associated

with the excess lung cancer mortality among smelting

workers, e.g., at two smelters in Montana and Washington

(Enterline and Marsh, 1982, Lee-Feldstein, 1986). Many epide-

miological studies have consistently shown that inhalation

Table 2 e The concentrations (mg/kg, mean ± SD, n ¼ 4) of arsenic species in the aerosol condensate samples.

Sample No. Un1 iAsIII Un2 Un3 MMA iAsV

6 0.52 ± 0.06 0.84 ± 0.07 0.43 ± 0.01 0.22 ± 0.11 N.D. N.D.*

7 0.62 ± 0.03 4.60 ± 0.19 0.49 ± 0.05 0.08 ± 0.01 N.D. 0.83 ± 0.21

8 1.03 ± 0.16 3.37 ± 0.06 0.47 ± 0.16 N.D. N.D. 2.08 ± 0.18

9 0.45 ± 0.03 4.55 ± 0.78 0.51 ± 0.20 0.10 ± 0.01 0.06 ± 0.02 0.52 ± 0.01

11 0.71 ± 0.11 4.05 ± 0.84 0.73 ± 0.04 0.11 ± 0.03 N.D. 0.93 ± 0.40

12 0.96 ± 0.08 3.16 ± 0.26 0.34 ± 0.21 N.D. N.D. 0.88 ± 0.20

13 0.21 ± 0.01 0.50 ± 0.02 0.07 ± 0.01 0.08 ± 0.04 N.D. 2.26 ± 0.12

16 0.34 ± 0.06 0.64 ± 0.36 0.37 ± 0.12 0.23 ± 0.04 N.D. 1.01 ± 0.61

Species median 0.57 3.27 0.45 0.09 N.D. 0.97

* N.D. denotes below the detection limit (LOD) of 0.01 mg/kg for AsB, 0.02 mg/kg for iAsIII, 0.01 mg/kg for DMA, 0.01 mg/kg for MMA, and 0.37 mg/kg

for iAsV in the e-liquid samples. Un1, Un2, and Un3 were three arsenic species whose chemical structure were not yet identified and eluted at

retention time of 1.1 min, 4.6 min, and 5.7 min, respectively. Their detection limits were set as same as the detection limits of the arsenic

species that had the closest retention time with them.

Table 3 e Comparison between concentrations of individual arsenic species in the e-liquid samples and in the aerosol
condensate samples (n ¼ 8).

Species E-liquids
(median (IQR), mg/kg)

Detectable ratio in
e-liquids

Aerosol (median
(IQR), mg/kg)

Detectable ratio
in aerosol

p-values

Un1 0.60 (0.40e0.84) 8/8 0.57 (0.37e0.90) 8/8 0.889

iAsIII N.D.* (N.D.-1.02) 4/8 3.27 (0.69e4.43) 8/8 0.012**

Un2 1.25 (0.62e1.53) 8/8 0.45 (0.35e0.51) 8/8 0.012**

Un3 0.36 (0.31e0.39) 8/8 0.09 (0.02e0.19) 6/8 0.012**

MMA N.D.(N.D.-N.D.) 1/8 N.D.(N.D.-N.D.) 1/8 0.317

iAsV 1.71 (0.94e2.29) 7/8 0.91 (0.60e1.81) 7/8 0.063

* N.D.means below the detection limit (LOD) of 0.01 mg/kg for AsB, 0.02 mg/kg for iAsIII, 0.01 mg/kg for DMA, 0.01 mg/kg for MMA, and 0.37 mg/kg for

iAsV in the e-liquid samples. Un1, Un2, and Un3 were three arsenic species whose chemical structure were not yet identified and eluted at

retention time of 1.1 min, 4.6 min, and 5.7 min, respectively. Their detection limits were set as same as the detection limits of the arsenic

species that had the closest retention time with them. When doing the Wilcoxon signed rank test, we used LOD/2 to substitute N.D.;
** Statistically significant at a ¼ 0.05 level.
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exposure to inorganic arsenic increased the risk of lung cancer

(Frost et al., 1987; J€arup and Pershagen, 1991; Guo, 2004). On

the basis of lung cancer risks, the United States Environ-

mental Protection Agency (EPA) derived an inhalation unit risk

factor (URF) of 4.3 � 10�3 excess cancer risk associated with a

lifetime exposure to 1 mg/m3 of inorganic arsenic in the air (US

EPA, 1986). Our study estimated that the median concentra-

tion of inorganic arsenic species in the vaping air was

approximately 3.4 mg/m3. A lifetime inhalation exposure of

inorganic arsenic species at 3.4 mg/m3 would correspond to an

excess lung cancer risk of 1.5 � 10�2. Taking into account that

inhalation exposure from e-cigarette may be intermittent,

with vaping at 1% of the time inhaling inorganic arsenic spe-

cies at 3.4 mg/m3, an excess lung cancer risk would be

1.5� 10�4, which is still 150 times higher than the EPA’s goal of

1 � 10�6. Notwithstanding the fact that the linear extrapola-

tion involves large uncertainties and that the inhalation

exposure from e-cigarette is intermittent, inhalation of inor-

ganic arsenic from e-cigarette vaping is a serious health

concern.

2.5. New arsenic species yet to be fully characterized

The three new arsenic species, Un1 eluting at a retention time

of 1.1 min, Un2 at 4.6 min, and Un3 at 5.7 min (Fig. 1B), remain

to be fully characterized. Their chromatographic retention

times do not match with any of the known arsenic standards

available to us (Cullen et al., 2016). Further research to identify

these arsenic species is necessary. Methods for sample treat-

ment, pre-concentration of arsenic species, efficient chro-

matographic separation of arsenic species, in combination

with ICPMS and electrospray ionization (ESI) mass spectrom-

etry (MS) detection will be useful for the chemical character-

ization and identification of new arsenic species (Liu et al.,

2018a, 2018b; Peng et al., 2017; Reid et al., 2020). Our previous

studies using HPLC separation and simultaneous detection

with ICPMS and ESIMS have succeeded in identification of

several new arsenic species (Liu et al., 2018; Peng et al., 2017).

It is not known where the arsenic species in e-liquids were

originated from. E-liquids typically consists of glycerol, pro-

pylene glycol, vegetable glycerin, nicotine, and various

flavoring chemicals. Impurities from any of these components

could contribute to the detected arsenic species. Inorganic and

organic arsenic species of theþ3 andþ 5 oxidation states have

been shown to be present in various food items and biological

and environmental media (Foster andMaher, 2016; Kalantzi et

al., 2017; Khan and Francesconi, 2016; Popowich et al., 2016;

Raab et al., 2013; Sun et al., 2016; Taleshi et al., 2014; Taylor

et al., 2017; Thomas and Bradham, 2016; Uppal et al., 2019).

Recent findings of arsenolipids in oily materials, e.g., fish oil,

may be relevant to further research on arsenic species in e-

liquids. Reported arsenolipids include arsenic-containing hy-

drocarbons, fatty acids, phospholipids, phosphatidylcholines,

fatty alcohols, and phosphatidylethanolamines (Khan and

Francesconi, 2016; Raab et al., 2013; Taleshi et al., 2014;

Taylor et al., 2017). Reversed-phase liquid chromatography

in combination with detection of ICPMS and ESIMS will be

useful for determining possible presence of these relatively

hydrophobic arsenic species (Reid et al., 2020).

3. Conclusions

The present study assessed the concentrations of individual

arsenic species in the e-liquid samples used for rechargeable

USB-like and tank-type e-cigarettes, representative samples

purchased from online and local e-cigarette stores in Canada

and China. The total concentrations of arsenic species in the

e-liquid samples ranged from 1.37 to 12.4 mg/kg. These values

are on the same order of magnitude as those reported by

Olmedo et al. (2018) and Song et al. (2018). Six arsenic species

were detected in the e-liquid samples and the aerosols

generated from the e-liquids. The concentration of iAsIII was

significantly increased after vaping the e-liquids. The median

concentrations of inorganic arsenic in the vaping air was

approximately 3.4 mg/m3. This was compared to the permis-

sible occupational exposure limit of 10 mg/m3 set by OSHA.

On the basis of the EPA’s unit risk factor (4.3 � 10�3) for

inhalation exposure to 1 mg/m3 of inorganic arsenic in the air,

inhalation exposure to 3.4 mg/m3 of inorganic arsenic in the

vaping air would give rise to an excess lifetime lung cancer

risk of 1.5 � 10�4, after taking into account of intermittent

vaping at 1% of the time. This increased lung cancer risk is

more than 150 times higher than the EPA’s goal of one in a

million.

Electronic cigarettes have become increasingly consumed

worldwide, with popularity among teenagers. As of 2016, the

United States Food and Drug Administration (FDA) extended

its regulatory power on tobacco products to include electronic

cigarettes. The legal status of electronic cigarettes is currently

pending in many countries. The arsenic exposure from e-

cigarettes is of a particular concern of both customers and

regulatory agencies. The present study provides quantitative

information on individual arsenic species in e-liquid and

aerosols of some of the popular electronic cigarettes on mar-

kets. Our findings of inorganic arsenic species in the e-liquids,

the estimated concentration of arsenic in the vaping air, and

the potential lung cancer risks from the inhalation exposure

call for further research and regulatory considerations of e-

cigarettes including e-liquids.
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