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a b s t r a c t 

Although animal manure is applied to agricultural fields for its nutrient value, it may also 

contain potential contaminants. To determine the variability in such contaminants as well 

as in valuable nutrients, nine uncomposted manure samples from Idaho dairies collected 

during 2.5 years were analyzed for macro- and micro-nutrients, hormones, phytoestrogens, 

antibiotics, veterinary drugs, antibiotic resistance genes, and genetic elements involved in 

the spread of antibiotic resistance. Total N ranged from 6.8 to 30.7 (C:N of 10 to 21), P from 2.4 

to 9.0, and K from 10.2 to 47.7 g/kg manure. Zn (103 – 348 mg/kg) was more abundant than 

Cu (56 – 127 mg/kg) in all samples. Phytoestrogens were the most prevalent contaminants 

detected, with concentrations fluctuating over time, reflecting animal diets. This is the first 

study to document the presence of flunixin, a non-steroidal anti-inflammatory drug, in solid 

stacked manure from regular dairy operations. Monensin was the most frequently detected 

antibiotic. Progesterones and sulfonamides were regularly detected. We also investigated 

the relative abundance of several types of plasmids involved in the spread of antibiotic re- 

sistance in clinical settings. Plasmids belonging to the IncI, IncP, and IncQ1 incompatibility 

groups were found in almost all manure samples. IncQ1 plasmids, class 1 integrons, and sul- 

fonamide resistance genes were the most widespread and abundant genetic element sur- 

veyed, emphasizing their potential role in the spread of antibiotic resistance. The benefits 

associated with amending agricultural soils with dairy manure must be carefully weighed 

against the potential negative consequences of any manure contaminants. 

© 2020 The Research Center for Eco-Environmental Sciences, Chinese Academy of 

Sciences. Published by Elsevier B.V. 

Introduction 

Dairy production will continue to increase in order to supply the grow- 
ing global demand for protein sources that meet the nutritional re- 
quirements of consumers ( Chagunda et al., 2016 ; Flachowsky et al., 
2018 ; Lagrange et al., 2015 ). As a consequence, manure production will 
correspondingly increase, resulting in concentrated sources of waste 
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materials that are typically applied to agricultural fields to provide 
essential plant nutrients and organic matter ( Diacono and Monte- 
murro, 2010 ). Due to its nutritional abundance, regular application of 
manure has been shown to increase macro- and micronutrient concen- 
trations in degraded soils ( Diacono and Montemurro, 2010 ; Garcia et al., 
2017 ; Larney et al., 2011 ). Although manure is applied at a rate to 
match its available nutrients to a crop’s requirements, much of the to- 
tal nitrogen (N) and phosphorus (P) in manure occur in their organic 
forms, which are not immediately plant-available. Mineralization of or- 
ganic substrates to bioavailable nitrate (NO 3 

−-N), ammonium (NH 4 
+ - 

N), and phosphate over several years can result in overapplication of 
total N and P to an agricultural field, especially after repeated applica- 
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tions. Consequently, leaching of nitrate into groundwater is a threat 
to human health ( Ahada and Suthar, 2018 ; Basso and Ritchie, 2005 ; 
Biddau et al., 2019 ; Di and Cameron, 2002 ; Zhou et al., 2016 ) and ex- 
cess N and P in surface water cause eutrophication ( Luo et al., 2017 ). 

Along with these macronutrients applied with manure to meet 
crop needs, micronutrients present in the manure can also accumu- 
late in soil ( Sheppard and Sanipelli, 2012 ). Copper (Cu) and zinc (Zn) 
are food additives used by the dairy industry that concentrate in ma- 
nure ( Griffiths et al., 2007 ; Wysocka et al., 2019 ). They are also used 
as sulfates in footbaths to prevent hoof diseases, and the leftover so- 
lution is often disposed with the manure ( Downing et al., 2010 ). Cu 
and Zn have been shown to accumulate in soil after manure appli- 
cation ( Diacono and Montemurro, 2010 ; Imseng et al., 2019 ; Li et al., 
2019 ; Sheppard and Sanipelli, 2012 ), possibly because metal sorption to 
soil increases when applied with an organic fertilizer ( Antoniadis, 2008 ; 
Guan et al., 2011 ; Song et al., 2017 ). 

In addition to well-characterized contaminants, many additives are 
frequently used in modern intensive animal agriculture. As a conse- 
quence, the manure it generates has become a potential source of an- 
tibiotics, synthetic and endogenous hormones, growth promoters, and 
antibiotic resistant bacteria ( Albero et al., 2014 ; Campagnolo et al., 2002 ; 
Feng et al., 2016 ; Meyer et al., 2000 ; Pruden et al., 2016 ; Ray et al., 2017 ). 
The application of manure containing such emerging contaminants 
(ECs) provides a direct route for ECs to impact environmental or human 
health through soil leaching, runoff, and plant uptake ( Fahrenfeld et al., 
2014 ; Fisher and Scott, 2008 ; Marti et al., 2013 ; Pan and Chu, 2017 ; 
Tien et al., 2017 ). Significant concentrations of antibiotics, antibiotic 
resistant bacteria, and antibiotic resistance genes (ARGs) have been 
identified in surveys of livestock manure, agricultural soils receiving 
land-applied manure, and surface and groundwater in agricultural 
areas ( Campagnolo et al., 2002 ; Muurinen et al., 2017 ; Noyes et al., 
2016 ; Thanner et al., 2016 ; Wichmann et al., 2014 ; Wolters et al., 2016 ; 
Zhu et al., 2013 ). Dairy cattle pose unique challenges with respect 
to ECs, because of their constant cycle of pregnancy and lactation, 
whereby the animals excrete large quantities of endogenous hormones 
primarily as estrogens and progesterones ( Hanselman et al., 2003 ; 
Zheng et al., 2008 ). In addition, a diet of soy and clover can result in 
high concentrations of plant-derived estrogenic compounds in dairy 
cow manure ( Hoerger et al., 2011 ; Tucker et al., 2010 ). These so-called 
phytoestrogens have been shown to cause significant endocrine dis- 
ruption in multiple fish species both in vivo and in vitro ( DiMaggio et al., 
2016 ; Jarošová et al., 2015 ; Latonnelle et al., 2002 ; Nezafatian et al., 2017 ). 
Excess hormones and phytoestrogens in surface water severely affect 
aquatic species that are particularly sensitive to endocrine disrupting 
compounds ( Lange et al., 2012 ; Schubert et al., 2014 ). 

Antibiotics (and metals) are ECs of unique concern because of their 
potential to promote the spread of multidrug-resistant bacteria, lead- 
ing to the loss of drug efficacy ( World Health Organization, 2014 ). Many 
of the antibiotics distributed for human use - including penicillin, tetra- 
cyclines, and sulfonamides - are also approved for use in dairy cows. 
Sick cattle are administered various antibiotics, up to 80% of which can 
pass unmetabolized through the animal ( Kemper et al., 2008 ), as veri- 
fied by frequent detections of antibiotics and antibiotic resistant bac- 
teria or genes in dairy manure ( Dungan et al., 2018 ; Kyselková et al., 
2015 ; Munir and Xagoraraki, 2011 ; Wichmann et al., 2014 ). As a result 
of dairy manure application to agricultural fields, substantial amounts 
of antibiotics and antibiotic resistant bacteria or their genes can per- 
sist in soil for several months ( Marti et al., 2013 ; McKinney et al., 2018 ; 
Sandberg and LaPara, 2016 ). However, whether dairy manure repre- 
sents a significant route for transfer of antibiotic resistant bacteria 
or genes to human and animal pathogens has not been determined 
( Tien et al., 2017 ). 

To assess the benefits and potential threats of land application of 
manure to environmental and human health, it is imperative to quan- 
tify temporal variation of the nutrients and contaminants it contains. 
We therefore analyzed uncomposted dairy manure produced at com- 
mercial dairy operations in Southern Idaho. It is important to note 
that Idaho is the third largest milk producing state in the U.S. ( USDA- 
ERS, 2019 ) and nearly all of its ̃500 dairies are located in Southern Idaho 
( Dairy West, 2018 ), resulting in the accumulation of large quantities of 
manure in a concentrated geographic region. The objective of this study 
was to identify and quantify nutrients and ECs in manure during a 2.5- 

year period. Analyses to determine the presence and potential impacts 
of ECs included direct measurements and assessment of biomarkers 
indicating the presence of ARGs. 

1. Materials and methods 

1.1. Sample collection and storage 

Manure was collected prior to composting from Magic Valley Compost- 
ing (MVC) in Jerome, Idaho, a facility that accepts manure from approx- 
imately 40 dairies within 100 km (M. de Haro Martí, personal commu- 
nication). Manure may be stored for weeks or months at the dairies 
before arriving at MVC, thus the exact age of each analyzed manure 
sample was unknown. Samples obtained represent likely scenarios for 
manure management, ensure a representative and random subsample 
of dairy manure, and protect individual dairies from liability concerns. 

Nine composite samples of uncomposted dairy manure from MVC 

were obtained between June 2015 and January 2017 following Univer- 
sity of Idaho’s extension protocol ( Moore et al., 2015 ). Each composite 
sample was comprised of eight subsamples from one windrow, with 
four subsamples collected from each side. Subsamples were taken from 

fresh, unturned windrows of dairy manure. The eight subsamples were 
mixed thoroughly, and the resultant homogeneous composite sample 
was transferred to two one-gallon plastic bags. One bag was sent to 
Soiltest Farm Consultants, Inc. (Moses Lake, WA, USA) for nutritional 
and metal analysis, and the other bag was shipped overnight on ice 
to our laboratory and immediately stored at 4 °C. Standardized Test 
Methods for the Examination of Composting and Compost (TMECC) 
( Thompson et al., 2002 ) used for manure analysis are detailed in Ap- 
pendix A Table S1 . 

1.2. Manure extraction and chemical analysis 

Manure was extracted and analyzed for twenty ECs: six hormones, four 
phytoestrogens, eight antibiotics, and two veterinary drugs ( Table 1 ). 
Extraction methods were adapted from Aga et al. (2005) using acidified 
acetone (pH = 4.0) and citric acid. Detailed extraction and analysis pro- 
tocols are provided as Appendix A Table S2 . Briefly, approximately 1 g 
dry weight manure was spiked with 0.1 μg 2,3,4–13 C 3 –17 β-estradiol and 
13 C 6 -phenylsulfadimethoxine to monitor extraction and recovery. The 
extract was concentrated on an Oasis HLB 3cc solid phase extraction 
(SPE) cartridge previously conditioned with 3 mL of methanol, 3 mL 
of water, and 1 mL of citric acid. The cartridge was dried under vac- 
uum for 30 min. Cartridges were stored at −20 °C and eluted within 18 
wk. SPE cartridges were eluted with 2 mL of 50:50 methanol:acetone 
and 2 mL of methanol. SPE extracts were evaporated to 1 mL under ni- 
trogen (N 2 ) gas and analyzed by HPLC-MS-ToF (high performance liq- 
uid chromatography- mass spectrometry-time of flight) (Agilent, Santa 
Clara, CA, USA) on a Kinetex C18 column (Phenomenex, Torrance, CA, 
USA). 

1.3. Detection of mobile genetic elements and ARGs 

Total DNA was extracted from manure samples in triplicate using the 
PowerSoil® DNA isolation kit (MoBio, Carlsbad, CA, USA) following the 
manufacturer’s instructions, except that approximately 125 mg of ma- 
nure was used for extraction (weights were recorded for each individ- 
ual extraction) and eluted in 50 μL of buffer. An extraction control with- 
out manure was included in each set of DNA extractions. DNA samples 
were maintained at −20 °C until analysis. 

The quantitative real-time polymerase chain reaction (qPCR) meth- 
ods used to identify the different targets are described in Table 2 . All 
qPCR reactions were performed in a total volume of 10 or 20 μL with 
1 or 2 μL of total DNA, respectively, using the PerfeCta® qPCR Tough- 
Mix 2X (Quanta BioSciences, Beverly, MA, USA) or the Power SYBR®
Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA) and 
a primer/probe according to the published method ( Table 2 ). The qPCR 
assays were performed in duplicate with a StepOnePlus TM Real-Time 
PCR System (Applied Biosystems, Foster City, CA, USA) using cycling 
programs described in the published method ( Table 2 ). In order to 
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Table 1 – Organic compounds quantified in manure extracts. 

EC Group Emerging contaminants 

Hormone 17 α-estradiol, 17 β-estradiol, estrone, estriol, progesterone, 17 α-hydroxyprogesterone 
Phytoestrogen enterodiol, formononetin, biochanin A, equol 
Antibiotic sulfamethazine, sulfadimethoxine, sulfamethoxazole, sulfathiazole, tetracycline, oxytetracycline, chlortetracycline, penicillin G 

Others flunixin, monensin 

Table 2 – Genetic elements targeted by real-time qPCR in dairy manure samples. 

Genetic element Gene targeted References Reaction volume (μL) DNA used to construct standard a 

16S rRNA encoding gene V3-V4 region of 16S rRNA gene Liu et al., 2012 10 Genomic DNA EC100 
Class 1 integrons Integrase intI1 Barraud et al., 2010 20 pB10 a 

IncP plasmid korB Jechalke et al., 2013 20 pB10 a 

IncI1 plasmid traI Blau et al., 2018 20 R64 
IncI2 plasmid traI Blau et al., 2018 20 pHNSHP45 
IncQ1 plasmid repB This study 20 RSF1010 
IncF plasmid traI Blau et al., 2018 20 F 
Sulfonamide resistance gene sul1 Pei et al., 2006 20 pB10 
Sulfonamide resistance gene sul2 Pei et al., 2006 20 peH4H 

a The plasmid pB10 was used as a standard plasmid for class 1 integrons and the IncP plasmids. 

avoid qPCR inhibitor effects, total DNA samples were diluted 10-fold. 
Readily available plasmids were used to construct a standard curve in 
duplicate in each qPCR run. The limit of quantification (LOQ) of the 
qPCR assay was determined as the serial dilution of each standard 
curve with the lowest concentration of standard plasmid DNA at which 
the standard deviation for technical replicates was low according to 
the StepOnePlus TM Software v2.3 (Applied Biosystems, Foster City, CA, 
USA). LOQs are reported per gram of the average weight of dry manure 
used for DNA extraction and account for DNA elution volume, dilution 
factor, and DNA volume used for real-time qPCR. Efficiencies of qPCR 
ranged from 87.4% to 105%. Amplification results were analyzed us- 
ing StepOnePlus TM Software v2.3 (Applied Biosystems, Foster City, CA, 
USA). 

For all but class 1 integrons and IncP (i.e. IncP-1) plasmid 
quantifications, standard plasmids were constructed as described in 
Blau et al. (2018) by amplifying each target from the DNA molecules 
described in Table 2 with the corresponding primer pairs used for real- 
time qPCR. PCR reactions were performed in a 50 μL final volume us- 
ing the following mixture: Master Mix 2X (Thermo Scientific, Waltham, 
MA, USA), 0.3 μmol/L of each primer (Millipore Sigma, Burlington, MA, 
USA), and 2 μL of the DNA template. The plasmid pB10 was used as a 
standard plasmid for class 1 integrons and the IncP plasmids. 

The primers and probe used to detect the IncQ1 plasmid were based 
on phylogenetic relationships of the IncQ plasmid family reported 
in the publication by Loftie-Eaton and Rawlings (2012) . Sequences of 
the repB gene of plasmids of the IncQ1 subgroup were aligned, and 
conserved nucleotide sequences were used for the design of forward 
primer qIncQ1-fw (CGARGAAYTATCAGGCAT), reverse primer qIncQ1- 
rv (GTCTTGCCSYTGGAYTCM), and TaqMan probe qIncQ1-tp (CTTGTC- 
CTTGCGGTTGGT), resulting in a PCR product of 220 bp. The tempera- 
ture program used for the IncQ1 qPCR was 10 min at 95 °C followed by 
40 cycles of 30 s at 95 °C and 60 s at 60 °C. 

1.4. Data analysis 

Chromatographic data processing was performed with Analyst QS 1.1 
software (Applied Biosystems, Foster City, CA, USA). Compounds were 
identified by their retention times and the specific product masses re- 
sulting from fragmentation. Calibration standards were included with 
each use of the HPLC-MS-ToF to account for day-to-day variability. All 
calibration curves had an r 2 value of 0.98 or greater. Limits of detec- 
tion (LOD) for HPLC-MS-ToF were based on a least square regression of 

3.3( s y b −1 ), where s y equals the residual standard deviation of the cali- 
bration curve and b is the slope of the line (Appendix A Table S2 ). The 
analytical error of HPLC-MS-ToF analysis did not exceeded 10% based 
on the internal quality control and calibration sample analysis. Com- 
pounds positively identified in the HPLC-MS-ToF but below the LOD 

were recorded as below detection limits (BDL). Observations that were 
identified as BDL were independently evaluated according to the meth- 
ods described in the Environmental Protection Agency’s Data Quality 
Assessment ( USEPA, 2006 ), and were ultimately treated as not present 
in the data analysis. 

Manure nutrient and physical data obtained from Soiltest Farm 

Consultants were analyzed for correlation using the “proc corr” com- 
mand in SAS 9.4 ( SAS Institute Inc., 2013 ). Copy numbers of target genes 
are reported per gram of dry manure, and normalized gene copy num- 
bers were calculated by dividing these copy numbers by the copy num- 
ber of the 16S rRNA encoding gene. The correlation between the log 
transformation of the relative abundance of genes was tested using 
Spearman’s rank correlation coefficient according to the package gg- 
pubr in R ( R Core Team, 2017 ). 

1.5. Data presentation 

Samples were collected on June 12, August 18, and October 22 of 2015; 
March 25, May 6, June 2, July 28, and November 1 of 2016; and January 20 
of 2017 ( Table 3 ). To allow for visualization of seasonal trends, the data 
in the figures are presented in chronological order based on month, 
regardless of the respective year in which samples were collected. 

2. Results and discussion 

2.1. pH 

Manure pH was assessed in this study because of its critical influ- 
ence on nutrient and metal availability, microbial activity, and behav- 
ior of organic compounds. Water content of the manure, which ranged 
from 37.1% to 69.7% ( Table 3 ), negatively correlated with manure pH 

(7.6 to 9.2), with drier manure samples having a more basic pH ( Fig. 1 , 
r = −0.80, p = 0.0102). Basic pH values recorded here are consistent with 
the practice of applying various types of manure to treat acid soils and 
improve crop productivity ( Benke et al., 2010 ; Butler and Muir, 2006 ; 
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Table 3 – Collection dates and selected chemical properties of the manure composite samples. 

Date received Water content (%) TC (%) TN (%) C:N pH EC (mmhos/cm) 

6/12/15 69.66 21.93 1.02 21.6 7.6 3.05 
8/18/15 51.06 25.34 2.41 10.5 8.6 9.17 
10/22/15 48.50 23.30 1.59 14.5 8.7 6.51 
3/25/16 54.15 15.02 1.17 12.9 8.4 3.95 
5/6/16 58.35 12.82 0.68 18.7 8.6 2.90 
6/2/16 41.83 10.97 0.91 12.05 8.8 4.46 
7/28/16 37.12 32.72 3.07 10.7 9.2 10.73 
11/1/16 45.49 19.55 1.89 10.4 8.3 9.29 
1/20/17 65.23 12.21 1.22 10.0 8.4 4.71 

All values reported on a dry manure weight basis. C:N = carbon to nitrogen ratio; EC = electrical conductivity; TC = total carbon; TN = total 
nitrogen. 

Fig. 1 – Correlation of percent water and pH in dairy manure 
composite samples. 

Butterly et al., 2013 ; Lupwayi et al., 2014 ; Whalen et al., 2000 ). However, 
long-term studies on the effect of regular manure applications on soil 
pH have produced inconsistent results due to the complexity of the sys- 
tem ( Butterly et al., 2013 ; Diacono and Montemurro, 2010 ; Repsiene and 
Karcauskiene, 2016 ; Whalen et al., 2000 ; Zglobicki et al., 2016 ). In- 
herent soil properties, climatic and environmental factors, historical 
land management, and manure composition influence the extent by 
which manure additions influence soil pH ( Eghball, 1999 ; Gaskell and 
Smith, 2007 ; Hutjens, 1998 ; Ozlu and Kumar, 2018 ; Repsiene and Kar- 
causkiene, 2016 ; Vašák et al., 2016 ). 

The cause of the negative correlation between manure water 
content and pH ( Fig. 1 ) is unknown but may be explained in part 
by the complex equilibrium among carbonate and N-species in 
manure, and by microbial activities ( Cáceres et al., 2006 ; García- 
González et al., 2015 ; Huang et al., 2004 ; Husted et al., 1991 ; Sommer and 
Husted, 1995 ; Stevens and Cornforth, 1974 ; Vanotti et al., 2017 ; Wen and 
Brooker, 1995 ). 

Various mechanisms have been proposed to explain manure pH 

changes due to aeration. Husted et al. (1991) describe it as a balance 
between the buffering systems of NH 3 /NH 4 

+ and CO 2 /HCO 3 
−/CO 3 

2 −. 
Since dissolved CO 2 (i.e., carbonic acid) is far less soluble than NH 3 

and very unstable, CO 2 rapidly volatilizes and causes the manure pH 

to rapidly increase. Alternatively, aeration degrades natural bicarbon- 
ate (HCO 3 

−) in manure and releases CO 2 and hydroxide ions, the latter 
causing a significant and rapid pH rise ( García-González et al., 2015 ; 
Vanotti et al., 2017 ). Stevens and Cornforth (1974) suggest that less- or 
non-aerated manure samples contain a greater concentration of dis- 
solved CO 2 (H 2 CO 3 ), which converts to bicarbonate between pHs of 4.3 
and 8.3, the typical pH range of fresh dairy manure ( McDonald, 2006 ). 

Bicarbonate will then complex with ammonia to produce ammo- 
nium bicarbonate, thereby maintaining manure at a near neutral pH 

( Stevens and Cornforth, 1974 ). Indeed, most NH 4 
+ in swine manure 

is complexed as ammonium bicarbonate ( Zhang et al., 2017 ). Manure 
aeration also decreases manure water content by evaporation, thereby 
increasing the concentration of total ammoniacal N (NH 3 plus NH 4 

+ ) 
( Huang et al., 2004 ; Panetta et al., 2005 ). Concentrations of NH 4 

+ -N 

and NO 3 
−-N observed in our samples reflect trends generally seen in 

aerobically stored fresh manure; in the first 1–2 weeks, NH 4 
+ -N in- 

creases while NO 3 
−-N concentrations remain virtually undetectable 

( Huang et al., 2004 ). The C:N ratio of manure samples varied from 10 
to 21. 

The relatively high concentrations of NH 4 
+ -N in the manure ( Fig. 2 ) 

may have partially arisen from microbial activities. Alkaline conditions 
promote mineralization of organic N as illustrated by maximum urease 
activity in cattle feces occurring at about pH 8.0 ( Dai and Karring, 2014 ). 
Urea present in cow urine is rapidly hydrolyzed enzymatically by ure- 
ase produced by fecal microbes, such that within 20 h of mixing cow 

urine and feces, urea can completely convert to ammonia and car- 
bonic acid ( Bibby and Hukins, 1992 ; Dai and Karring, 2014 ; Moraes et al., 
2017 ). Given urease’s high catalytic activity, pH increases seen in this 
study were likely not strongly influenced by urea hydrolysis. Yet, we 
cannot definitively assess the impact of urea mineralization because 
ammonia volatilization depends on temperature, pH, and storage and 
handling conditions ( Johannesson et al., 2018 ; Sigurdarson et al., 2018 ). 
The greater rise in pH with increased O 2 aeration may also have arisen 
from increased rate of organic matter degradation ( Stevens and Corn- 
forth, 1974 ; Lambie et al., 2013 ). Regardless of the underlying mecha- 
nism, a range of 1.5 pH units that can potentially be controlled by mois- 
ture content has important implications in regulating microbial activ- 
ity, and thus, chemical transformations, metal solubility, and preserva- 
tion of ARGs. 

2.2. Nutrients 

Nutrient analysis of the manure samples, as expressed on a dry weight 
basis, produced widely variable results (Appendix A Table S3 ). Total N 

ranged from 6.8 to 30.7, P from 2.4 to 9.0, and K from 10.2 to 47.7 g/kg 
manure ( Table 3 and Fig. 2 ). The highest potential N:P:K value of the 
tested manures was equivalent to a fertilizer value of 3:2:6 and the low- 
est fertilizer value was approximately 1:1:1. The wide range in N:P:K 

values and the large coefficients of variance (CV) for each of the an- 
alyzed nutrients, which ranged from 20% to 212% (Appendix A Table 
S3), illustrate the high nutrient variability that can be expected in ma- 
nure. Similar variability has been reported in other manure studies 
( Jokela et al., 2010 ; Lorimor et al., 2004 ). For example, CVs of total N, 
NH 4 

+ -N, P, and K were 59%, 81%, 39%, and 74%, respectively, from a sur- 
vey of uncomposted manure from Vermont dairies ( Jokela et al., 2010 ) 
and were 50, 60, 43, and 51%, respectively, from our study. 

In the present study, the mean total N concentration was 1.6% (dry 
weight basis) (Supplementary Table S3), which was similar to the 1 
to < 3% previously reported for solid dairy manure ( Lehrsch et al., 
2017 ; Lentz and Lehrsch, 2018 ; Manitoba AFRD, 2015 ). Measured to- 
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Fig. 2 – Nutrients and metals present in dairy manure composite samples for the respective sampling months. (a) Available 
ammonium nitrogen (NH 4 

+ -N) and nitrate nitrogen (NO 3 
−-N); (b) Total phosphorus (P) and potassium (K); (c) Concentrations 

of copper (Cu) and zinc (Zn). 

tal P concentrations (2.4 to 9.0 g/kg) were likewise similar to reported 
ranges of about 2 to 8 g/kg ( Jokela et al., 2010 ; Kleinman et al., 2009 ; 
Lentz and Lehrsch, 2018 ; Lorimor et al., 2004 ; Manitoba AFRD, 2015 ). 
Measured total K concentrations of 10.2–47.7 g/kg represent a range 
that is slightly higher than has typically been reported for manure 
(3 to 37 g/kg) ( Jokela et al., 2010 ; Lehrsch et al., 2014 ; Lorimor et al., 
2004 ; Manitoba AFRD, 2015 ). High K concentration in manure is consis- 
tent with findings that manure application increases soil K content or 
runoff concentrations ( Domingo-Olivé et al., 2016 ; Lehrsch et al., 2014 ; 
Zglobicki et al., 2016 ). 

The C:N ratio of manure samples in this study ranged from 10:1 
to 21:1 ( Table 3 ), very similar to reported dairy manure C:N ratios of 
10:1 to 22:1 ( Lehrsch et al., 2017 ; Lehrsch and Kincaid, 2007 ; Lentz and 
Lehrsch, 2018 ; Wang et al., 2014 ). The calculated median C:N ratio of all 
collected samples was 12:1. When the C:N ratio of organic residues is 
approximately 24:1, the rates of microbial N mineralization and im- 
mobilization will be equal ( Eash et al., 2016 ). Greater C:N ratios re- 
sult in a net N immobilization, whereas net N mineralization occurs 
at C:N ratios less than 24:1. A median C:N ratio of 12:1 indicates that 
N will be readily available for plant uptake ( Qian and Schoenau, 2002 ; 
Diacono and Montemurro, 2010 ). 

Manure concentrations of NH 4 
+ -N and NO 3 

−-N observed in this 
study reflect trends generally seen in aerobically stored fresh manure 
( Lehrsch and Kincaid, 2007 ; Manitoba AFRD, 2015 ; Martin et al., 2011 ; 
Meisinger and Jokela, 2000 ; Todd et al., 2011 ). NH 4 

+ -N was the primary 
inorganic N species detected in the manure samples (500–3500 mg/kg), 
and was typically present at one or more orders of magnitude higher 
than nitrate ( Fig. 2 ). 

Inorganic N typically constitutes a small proportion of total N 

in dairy manure (1–25%) ( Bhogal et al., 2016 ; Chadwick et al., 2000 ; 
Eghball, 2000 ; Muñoz et al., 2003 ; Niu et al., 2017 ). Despite its small 
proportion of total N relative to organic N, mobilized inorganic N can 
become a potential environmental contaminant and threat to hu- 
man health via erosion ( Gangbazo et al., 1995 ; Lehrsch et al., 2014 ; 
Viney et al., 2000 ), runoff, and leaching ( Ahada and Suthar, 2018 ; 
Basso and Ritchie, 2005 ; Biddau et al., 2019 ; Di and Cameron, 2002 ; 
Gallet et al., 2003 ; Hepperly et al., 2009 ; Huang et al., 2017 ; Lentz and 
Lehrsch, 2018 ; Zhou et al., 2016 ). Phosphorus in dairy manure is like- 
wise subject to mobilization, by which it negatively impacts water 
quality through leaching and surface runoff of particulate and soluble 
forms ( Indiati et al., 1995 ; Kleinman et al., 2009 ; Kumaragamage and 
Akinremi, 2018 ; Li et al., 2016 ; Nest et al., 2016 ; Schelde et al., 2006 ; 
Weyers et al., 2017 ). Excessive N and P loading into surface waters 
leads to eutrophication, a major environmental problem that disrupts 

the equilibrium of aquatic ecosystems and results in harmful conse- 
quences on ecological and human health ( Luo et al., 2017 ; Yang et al., 
2008 ). 

2.3. Metals 

Zn (103 to 348 mg/kg) was more abundant than Cu (56 to 127 mg/kg) in 
all manure samples ( Fig. 2 ). Information about additional elements in- 
cluding B, Ca, Fe, Mg, Mn, Na, and S in each manure sample is provided 
in Appendix A Table S3 and Figs. S1-S3. Several studies have reported 
concentrations of Zn and Cu in dairy manure similar to those reported 
here. A survey of twenty New York dairies found Zn and Cu concen- 
trations in manure of 191 and 139 mg/kg, respectively ( McBride and 
Spiers, 2001 ). Four dairy farms in China had mean Zn and Cu concen- 
trations in manure of 144.4–225.5 mg/kg and 29.7–51.8 mg/kg, respec- 
tively ( Li et al., 2019 ). Fresh cow manure from Spain had Zn and Cu 
concentrations of 262 and 23 mg/kg, respectively ( Walker et al., 2003 ). 
In contrast to these studies, Brock et al. (2006) reported much greater 
concentrations of Zn (239 mg/kg) and Cu (409 mg/kg) in dairy manure 
than other studies, and notably, Cu levels were 1.7-fold greater than Zn. 

The effects of manure application on metal concentration and 
bioavailability in soil vary according to metal species, manure and soil 
properties, and exposure time ( Arnesen and Singh, 1998 ). Although Zn 
was more abundant in our manure samples, it is generally less mobile 
than Cu in soil and is often preferentially adsorbed over Cu on Al, Fe, 
and Mn hydrous oxides and soil exchange sites ( Fageria et al., 2002 ). 
This increases the likelihood for Zn to accumulate in fields receiving 
annual manure applications ( Imseng et al., 2019 ). 

Bioavailability of Cu and Zn in soil depends on several factors in- 
cluding total metal concentration, cation exchange capacity, organic 
matter, and soil pH ( Adrees et al., 2015 ). Although dairy manure’s 
high organic matter content generally binds Cu and Zn ( Leita et al., 
1999 ) and restricts their leaching through soil, dissolved organic car- 
bon or low molecular weight water-extractable carbon from manure 
can potentially facilitate transport of Cu and Zn through the soil pro- 
file as organometallic complexes ( Brock et al., 2006 ; Guan et al., 2011 ; 
Lekfeldt et al., 2017 ; Merritt and Erich, 2003 ). However, such facilitated 
transport is most likely to occur in soils and organic amendments that 
have acid pH and since pH of dairy manure is typically alkaline, Cu and 
Zn leaching as organic complexes does not usually pose a significant 
concern. 

Soil total Cu and Zn concentrations are strongly related to ex- 
tent of manure application, but they are not necessarily correlated 
with the metal content or distribution in plants cultivated on the soil 
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Fig. 3 – (a) Hormones detected in dairy manure composite samples in the respective sampling months. Progesterone (P) 
detections in June samples were below quantification limits; (b) Phytoestrogens detected in dairy manure in the respective 
sampling months. 

( Mantovi et al., 2003 ). Across various crop species, Zn is generally more 
bioavailable than Cu in high pH soils. Plant responses to bioavailable 
soil Cu are highly variable. For example, research suggests that mech- 
anisms exist in wheat ( Triticum aestivum ) to restrict Cu translocation 
from the roots and throughout the plant ( Guan et al., 2011 ). In contrast, 
high total and extractable soil Cu had no effect on Cu concentration in 
bean ( Phaseolus vulgaris ) shoots ( Senkondo et al., 2015 ). Also, increas- 
ingly high levels of bioavailable soil Cu resulting from applications of 
Cu-spiked dairy manure had no effect on the growth, yield, mineral 
concentration, or forage quality of corn ( Zea mays ) ( Flis et al., 2010 ). 

2.4. Organic contaminants 

Five hormones were identified in the manure samples: 17 β-estradiol, 
17 α-estradiol, estrone, progesterone, and 17 α-hydroxyprogesterone. Es- 
triol was not detected in any sample. Estrone was detected most fre- 
quently, in seven of the nine samples, and in the highest concentration, 
up to 307.4 μg/kg dried manure ( Fig. 3 ). Progesterone was detected in 
four samples, but concentrations were below quantification limits in 
two of those samples ( Fig. 3 ). There was a clear temporal distribution 
of hormone excretion ( Fig. 3 ), with manure estrogen levels tending to be 
greater in spring samples and progesterone levels tending to be greater 
in summer and fall samples. 

These hormone concentrations are consistent with the range re- 
ported by other studies on dry stacked dairy manure ( Raman et al., 
2004 ; Zheng et al., 2008 ). Although dairy cows produce only 17 β- 
estradiol, their intestinal microbes produce 17 α-estradiol. Conse- 
quently, both estradiol isomers are frequently reported in dairy ma- 
nure ( Gadd et al., 2010 ; Hanselman et al., 2003 ). Estrone is the degra- 
dation product of both estradiol isomers and is often the most fre- 
quently detected hormone in aged manure samples ( Raman et al., 2004 ; 
Zheng et al., 2008 ), as is consistent with our results. 

The distribution and concentration of hormones in dairy manure 
found in this study ( Fig. 5 ) exemplify the variability among individual 
dairy operations. Reproductive performance of dairy cows, and thus 
steroid hormone production and excretion levels, is impacted by sev- 
eral factors including environmental conditions ( De Rensis and Scara- 
muzzi, 2003 ; Hagevoort and Garcia, 2013 ), genetics, management prac- 
tices, and animal health and nutrition ( Walsh et al., 2011 ). Genetic 
selection for high-yielding milk breeds and increased use of growth- 
promoting pharmaceuticals ( IDA, 2019 ) have caused milk yield per 
cow in the U.S. to steadily increase over the past 50 years. This can 
negatively impact cows’ reproductive physiology, including decreased 
production and excretion of estrogen and progesterone ( Rodriguez- 
Martinez et al., 2008 ; Walsh et al., 2011 ; Wiltbank et al., 2006 ). Man- 

agement of dairy herd health and nutrition is especially challenging in 
large herds ( > 1500 cows), such as those found in Idaho’s Magic Valley - 
the source of manure for this study ( Rodriguez-Martinez et al., 2008 ). 

The temporal distribution of hormones seen in our results may re- 
flect herd management and calving cycles common at southern Idaho 
dairies, since the geographic region and its characteristic climate pat- 
tern affect dairy cow gestation variables ( Norman et al., 2009 ). Although 
calf birthrate on commercial U.S. dairies peaks in September and is low- 
est in April, calving occurs year-round, which makes it challenging to 
decipher hormone excretion trends in manure ( Norman et al., 2009 ). 
The method of manure collection used in this study inherently added 
significant variability since samples were taken from a central com- 
post facility that receives manure from numerous regional dairies, each 
of which contributes uniquely to biological variability in the compos- 
ite manure. Estrogen and progesterone excretion increases throughout 
gestation and peaks at birth ( Desaulniers et al., 1989 ; Erb et al., 1968 , 
1977 ; Hanselman et al., 2003 ; Yost et al., 2014 ), though progesterone 
concentrations are typically much higher than total estrogens at all 
points in the reproductive cycle ( Yost et al., 2014 ). The sharp peaks of 
estrogen levels in March and progesterone levels in July ( Fig. 3 ) may 
correspond to increases in calf birthrates. However, concentrations of 
estrogen and progesterone are expected to follow similar temporal 
trends, as opposed to the dissimilar hormone concentrations seen in 
this study. 

Although hormones are frequently found in dairy manure, they de- 
compose rapidly in soil and decomposition rates increase in the pres- 
ence of manure ( Lucas and Jones, 2006 ). In a laboratory microcosm 

study investigating degradation of 17 β-estradiol in a silt loam soil, 
Xuan et al. (2008) found that the degradation rate constant was propor- 
tional to the percentage of nonsterilized soil, illustrating the influence 
of soil microorganisms on 17 β-estradiol degradation ( Xuan et al., 2008 ). 
Additional studies indicate that estrone and 17 β-estradiol strongly 
sorb to soil ( Das et al., 2004 ), readily forming non-extractable and soil- 
bound residues across distinct agricultural soils ( Casey et al., 2003 ; 
Colucci et al., 2001 ). The results of these studies suggest low poten- 
tial for aqueous transport of estrogens through soil and low potential 
bioavailability. 

Despite the limited mobility of estrogen in laboratory batch studies, 
surveys have consistently found them in surface water, ground water, 
and agricultural plots that receive manure applications ( Bradford et al., 
2008 ; Schuh et al., 2011 ; Yu et al., 2019 ). Estrogens have been shown to 
move to depths of 35 m under constant, concentrated influxes such 
as under dairy lagoons ( Arnon et al., 2008 ; Bradford et al., 2008 ). Estro- 
gen movement through soil is enhanced by colloid-facilitated transport 
following effluent application ( D’Alessio et al., 2014 ). Moreover, low to- 
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tal organic carbon and presence of macropores in sandy soil signifi- 
cantly contribute to facilitated transport of hormones in the environ- 
ment ( D’Alessio et al., 2014 ). 

The presence of hormones in agricultural soils can cause other 
environmental problems. Endocrine disrupting chemicals from land- 
applied manure may negatively impact organisms, such as lizards who 
displayed estrogenic contamination only on fields that received animal 
manure application ( Verderame et al., 2016 ). Vegetative uptake of estro- 
gens from manure-amended soils may potentially impact humans and 
other organisms via dietary intake ( Adeel et al., 2018b ; Zhao et al., 2019 ). 
Lettuce uptake of estrogens has also been shown to negatively impact 
plant physiology, including root growth and development, leaf and root 
biomass, and chlorophyll concentration ( Adeel et al., 2018a ). 

Hormones in runoff from manure-amended fields can threaten 
aquatic organisms. However, the lowest estrogen concentration that 
results in an observable effect varies according to the species and 
age of the organism, the type of estrogen, and the sediment proper- 
ties ( Lasier et al., 2016 ; Leet et al., 2011 ; Sangster et al., 2014 , 2016 ). 
Widespread application of dairy and poultry manure on agricultural 
fields nearby the Upper Conasauga River (USA) resulted in bioavail- 
able estrogen concentrations in river sediments that were positively 
correlated with decreased growth of the amphipod Hyalella Azteca 
( Lasier et al., 2016 ). 17 β-Estradiol located in Nebraska river sediments 
was not bioavailable to the fathead minnow ( Pimephales promelas ) 
( Sangster et al., 2014 ), but female fathead minnows exhibited reduced 
reproductive success following exposure to progesterone-spiked sand 
or silt loam river sediments ( Sangster et al., 2016 ). However, sediment 
type differentially influenced fish exposure and biological response to 
steroid hormones because of the varying sorption capacities of sand 
and silt loam sediments ( Sangster et al., 2016 ). 

Phytoestrogens were detected in the highest concentrations of all 
studied ECs ( Fig. 3 ). Equol was detected in six manure samples at a max- 
imum concentration of 3396 μg/kg and enterodiol was detected twice 
at a maximum of 6604 μg/kg dried manure. There is a clear tempo- 
ral distribution of phytoestrogen excretion in dairy manure, with both 
compounds peaking in June ( Fig. 3 ), suggesting the inclusion of soy- 
based feeds in the herd diet during those months. The primary phy- 
toestrogens in soy ( Glycine max ) are genistein and daidzein and the lat- 
ter is known to be transformed by bacteria to equol in the intestinal 
tract of animals ( Setchell and Clerici, 2010 ). Equol was detected in the 
highest concentrations among six phytoestrogens present in manure 
collected from several Swiss dairies ( Hoerger et al., 2011 ). Similarly, a 
comprehensive analysis of a swine sow operation showed that equol 
concentrations were orders of magnitude greater than other phytoe- 
strogens in urine and feces ( Yost et al., 2014 ). Phytoestrogens have been 
detected in global surface waters and they, too, can impact aquatic or- 
ganisms ( Jarošová et al., 2015 ). A comparison of five phytoestrogens de- 
termined that equol caused the most endocrine effects on two differ- 
ent fish species ( Latonnelle et al., 2002 ), and male Japanese medaka 
( Oryzias latipes ) exposed to equol had a high occurrence of intersex, 
defined as simultaneous presence of male and female gonadal tissue 
( Kiparissis et al., 2003 ). 

This is the first study to document the presence of the non-steroidal 
anti-inflammatory drug (NSAID) flunixin in solid stacked manure from 

regular dairy operations, although it has been detected previously in 
milk and dairy products ( Chen et al., 2019 ; Kissell et al., 2012 ; Xie et al., 
2015 ). Here, flunixin was found in three samples, twice near the detec- 
tion limit and once at 136.9 μg/kg dried manure in the June 2016 sample 
( Fig. 4 ). Flunixin is used to treat inflammation and pain in hoofed live- 
stock, including cows and horses in the United States. Flunixin has not 
been tested for endocrine-disrupting capacity, and it is not an antibi- 
otic. Very little research has been done on the environmental transport 
or fate of flunixin. One study searching for race-promoting drugs in 
a racehorse stall found flunixin in the highest concentration of three 
NSAIDs on the barn walls, the dust on the rafters, and in the lagoon 
pond ( Barker, 2008 ), suggesting that flunixin may be pervasive in the 
environment. 

Flunixin, like most NSAIDs, is toxic to wildlife. In 2012, a wild 
Eurasian Griffon Vulture was found dead in Spain with elevated levels 
of flunixin from consuming livestock that had recently been given the 
drug ( Zorrilla et al., 2015 ). This was the first recorded case of an NSAID 

overdose in vultures outside of Asia, and the first documented case 

of wildlife overdose from flunixin. In the 1990s, Asian Gyps vultures 
went nearly extinct from NSAID toxicity, with one species dropping by 
99.9% in 15 years ( Zorrilla et al., 2015 ). Flunixin residues are widely dis- 
tributed throughout the musculature of dairy cows and despite max- 
imum residue limits to ensure food safety, 71% of flunixin residue vi- 
olations in the U.S. come from market dairy cows ( Shelver et al., 2016 ; 
USDA, 2017 ). Frequent use and accumulation of flunixin in the environ- 
ment and in dairy cows could prove dangerous to wildlife and human 
health. 

2.5. Antibiotics 

Antibiotics were found in six of the nine samples, and a single manure 
sample frequently had more than one type of antibiotic ( Fig. 4 ). Two dif- 
ferent sulfonamides (sulfadimethoxine and sulfamethazine) were de- 
tected in four manure samples ( Fig. 4 ), and compounds in the tetracy- 
cline family (tetracycline, chlorotetracycline, and oxytetracycline) were 
detected four times ( Fig. 4 ). Monensin was detected in seven of nine 
samples ranging from 20.4 to 801.27 μg/kg dried manure and once at 
a concentration below quantification limits (May 2016). Sulfamethoxa- 
zole, sulfathiazole, formononetin, biochanin A, and penicillin were not 
detected in any of the samples. 

Concentrations of antibiotics in manure are expected to vary widely 
among dairies due to their different management practices. Addition- 
ally, manure sampled in this study was stored for unknown periods of 
time at individual dairies before it was brought to the composting fa- 
cility. This partly explains the concentrations detected, such as with 
monensin, which varied from BDL to > 800 μg/kg. The variety of com- 
pounds detected in these dairy manure samples is similar to what has 
been reported in other studies on solid dairy waste composition and 
the compounds are present in similar concentrations ( Feng et al., 2016 ). 

Dairies have stricter requirements than other food-animal pro- 
duction systems regarding pharmaceutical supplements, and the FDA 

permits very few pharmaceuticals to be administered during lacta- 
tion. Monensin is one of the few veterinary drugs that the FDA has 
approved for use during lactation ( Maron et al., 2013 ; Santos et al., 
2019 ; Watanabe et al., 2008 ). It is used to promote lactation, pre- 
vent coccidiosis, and treat ketosis ( Duffield et al., 2012 ; Fisher and 
Scott, 2008 ). Likely, this explains why monensin was the most fre- 
quently detected antibiotic in this study and detected in the highest 
concentrations. Globally, monensin is often detected in dairy manure 
solids, dairy wastewater ( Watanabe et al., 2008 ), groundwater below 

dairies ( Watanabe et al., 2008 ), and in surface water downstream from 

dairy operations ( Fisher and Scott, 2008 ; Forrest et al., 2011 ; Kim and 
Carlson, 2006 ; Kurwadkar et al., 2013 ). For example, the presence of 27 
livestock antimicrobials was surveyed in 23 agricultural streams in Al- 
berta, Canada and monensin was the most frequently detected drug, 
found in 34% of the sites ( Forrest et al., 2011 ). Other veterinary phar- 
maceuticals associated with dairies have been frequently found in the 
environment. A survey in Australia detected oxytetracycline, tetracy- 
cline, penicillin, and sulphasalazine in creeks and streams known to 
be downstream from dairy operations ( Fisher and Scott, 2008 ). 

Numerous factors influence the extent to which hormones and 
pharmaceuticals in the environment threaten human health. Di- 
etary intake of foods grown in manure-amended soil is one route by 
which humans are exposed to contaminants of emerging concern. 
Plant bioavailability of contaminants of emerging concern is influ- 
enced by many factors, including soil texture, organic matter con- 
tent, and compound type. For example, tomato and cucumber up- 
take of pharmaceutical compounds from wastewater irrigation was 
inversely proportional to soil organic matter content and increased 
with soil texture: clay loam < sandy loam < sandy ( Goldstein et al., 
2014 ). When grown in manure-amended and antimicrobial-spiked soil, 
maize ( Zea mays L.) tissue accumulated greater sulfonamide concen- 
tration while tetracycline antibiotics mainly accumulated in the soil 
( Mullen et al., 2019 ). 

2.6. Mobile genetic elements and ARGs 

Monitoring the routes of spread of antibiotic resistance from di- 
verse sources is becoming part of a strategy to fight antibiotic re- 
sistance ( Berendonk et al., 2015 ). Class 1 integrons are genetic ele- 
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Fig. 4 – (a) Tetracyclines, monensin, and flunixin detected in dairy manure composite samples in the respective sampling 
months. Capital letters represent months in which concentrations of monensin (M) and flunixin (F) were detected, but at 
concentrations below quantification limits; (b) Sulfonamides detected in dairy manure in the respective sampling months. 

Table 4 – Approximate copy number (in gene copies per gram) and normalized copy number per copy of 16S rRNA encoding 
gene (in parenthesis) of class 1 integron and sulfonamide resistance genes ( sul1 and sul2 ) in animal manures. 

Origin Class 1 integron sul1 sul2 Reference 

Dairy cow (Minnesota, USA) 5 × 10 8 (8 × 10 −4 ) NA NA Sandberg and LaPara, 2016 
Dairy cow (Finland) NA NA (1 × 10 −4 ) NA Ruuskanen et al., 2016 
Dairy cow (Finland) NA (˜10 −3 ) NA (5 × 10 −4 ) NA Muurinen et al., 2017 
Dairy cow (Yangling, China) 8 × 10 7 (2 × 10 −4 ) 5 × 10 8 (1 × 10 −3 ) 2 × 10 9 (1 × 10 −2 ) Sun et al., 2016 
Cattle fecal deposits (Canada) NA ˜10 8 NA Alexander et al., 2011 
Dairy cow (Anhui province, China) 9 × 10 7 (7 × 10 −4 ) 1 × 10 8 (9 × 10 −4 ) 5 × 10 8 (4.2 × 10 −4 ) Peng et al., 2017 
Dairy cow (Michigan, USA) NA 1.5 × 10 8 (9 × 10 −6 to 9 × 10 −5 ) NA Munir and Xagoraraki, 2011 
Dairy cow slurry (Estonia) 1 × 10 7 (1 × 10 −4 ) 1 × 10 6 (1.5 × 10 −4 ) NA Nõlvak et al., 2016 

ments significantly involved in the rapid evolution and spread of an- 
tibiotic resistance ( Cambray et al., 2010 ; Gillings, 2017b ). They are con- 
sidered biomarkers of anthropogenic impact ( Gillings, 2017a , 2017b ; 
Gillings et al., 2015 ; Stalder et al., 2012 , 2013 , 2014 ; Stedtfeld et al., 2017 ) 
and have been used in studies to assess anthropogenic impacts in soils 
and rivers ( Aubertheau et al., 2017 ; Chen et al., 2016 ; Jechalke et al., 
2014a , 2014b ; Sandberg and LaPara, 2016 ), as well as in dairy cow ma- 
nure from various regions of the world ( Table 4 ). Sulfonamide resis- 
tance genes sul1 and sul2 constitute additional potential biomarkers 
for monitoring the spread of antibiotic resistance. Resistance to sulfon- 
amides, some of the most used antibiotics in dairies, is highly prevalent 
in bacteria isolated from animals ( Tadesse et al., 2012 ). Such resistance 
is often linked to class 1 integrons ( Sánchez-Osuna et al., 2019 ). 

Here we quantified class 1 integron integrase gene intI1 and sul- 
fonamide resistance genes sul1 and sul2 in all manure samples with 
copy numbers ranging from 1.2 × 10 7 to 1.8 × 10 9 copies/g of manure 
(Appendix A Fig. S4). The normalized copy numbers of class 1 inte- 
grons and sulfonamide resistance genes had the lowest variations of 
copy number among samples, especially for sul1 where values were 
all ranged within one order of magnitude ( Fig. 5 ). The resistance gene 
sul1 was positively correlated with intI1 (Spearman rank correlation 
coefficient sul1 vs. intI1 r = 0.52, P = 0.0064), indicating their genetic 
co-localization on the so called ‘clinical integrons’ as previously re- 
ported ( Gillings, 2017a ). However, here the correlation was rather weak 
compared to other studies ( Jechalke et al., 2016 ; McKinney et al., 2018 ; 
Nõlvak et al., 2016 ; Sun et al., 2015 ). The sul1 resistance gene was also 

positively correlated with sul2 (Spearman rank correlation coefficient 
sul1 vs sul2 r = 0.85, P = 4.2 × 10 −8 ), suggesting either a genetic link- 
age through a shared bacterial host or via a genetic element such as 
a plasmid, or selection (direct selection by sulfonamides antibiotics or 
indirect selection by metals). Measured copy numbers were similar to 
the ones found in the literature for the same source ( Table 4 ). The con- 
sistency of the normalized gene copy number within all manure sam- 
ples suggests that class 1 integrons and sulfonamide resistance genes 
are widespread across dairies within the studied area. We conclude 
that these genes constitute suitable biomarkers to assess the influence 
of dairy manure fertilization on the spread of antibiotic resistance in 
Southern Idaho. 

The emergence of bacterial pathogens that are resistant to mul- 
tiple antibiotics is largely caused by the sharing of resistance genes 
through horizontal gene transfer mediated by plasmids ( Frost et al., 
2005 ; Holmes et al., 2016 ). Plasmids are mobile genetic elements that 
replicate independently from the chromosome and can often transfer 
between bacteria by conjugation. Many carry the integrons described 
above ( Zhang et al., 2018 ). For the first time, we quantified the occur- 
rence of plasmids from several plasmid incompatibility groups in ma- 
nure. These included plasmids recently found to emerge from farm set- 
tings such as those belonging to the incompatibility groups IncQ1 and 
IncI, which were reported to confer resistance to critically important 
drugs of last resort ( Liu et al., 2016 ; Mollenkopf et al., 2017 ; Poirel and 
Nordmann, 2016 ). Despite the prominent role of plasmids in the emer- 
gence of multidrug resistance in pathogens, assessment of their pres- 
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Fig. 5 – Normalized copy number per copy of 16S rRNA encoding gene of class 1 integron integrase genes ( intI1 ), 
sulfonamide resistance genes ( sul1 and sul2 ), and IncP, IncQ1, IncI1, IncI2, and IncF ∗ plasmids in dairy manure composite 
samples sampled at different times. Closed circles represent the means of three independent manure replicate samples and 

bars represent the standard deviations. ∗Not all IncF subgroups were targeted. 

ence and spread via manure has received much less attention than 
ARGs or class 1 integrons. Here we developed a new set of primers and 
probe to quantify the IncQ1 plasmids and measured the copy num- 
bers of the IncI1, IncI2, IncF, and IncQ1 plasmids in manure for the first 
time. 

IncQ1 and IncP plasmids were detected in all samples, with copy 
numbers ranging from less than 1.8 × 10 5 to 1.1 × 10 8 copies/g of ma- 
nure. The IncI1 and IncI2 plasmids were present in almost all samples 
at copy numbers below the limit of quantification. Finally, IncF plas- 
mids were only detected and quantified in one sample of manure in 
July 2016. However, the primers and probes used here only target a 
fraction of the IncF plasmids ( Blau et al., 2018 ); therefore, lack of de- 

tection of IncF plasmids does not necessarily indicate their absence 
in the samples. The normalized copy number of IncQ1 plasmids was 
significantly correlated to intI1, sul1 , and sul2 resistance genes, sug- 
gesting a genetic linkage (Spearman rank correlation coefficient for 
IncQ1 vs. intI1 was r = 0.59, P = 0.0012; for IncQ1 vs. sul1 was r = 0.70, 
P = 7.92 × 10 −5 ; for IncQ1 vs. sul2 was r = 0.48, P = 0.012). IncQ- 
like plasmids have been reported in piggery manure ( Smalla et al., 
2000 ; Tietze, 1998 ; Wolters et al., 2016 ) and are frequently associated 
with the resistance gene sul2 in animals and humans ( Sundin and 
Bender, 1996 ). Our results indicate that the broad host range IncQ1 
plasmids are widespread in dairy cow manure from Southern 
Idaho. 
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3. Conclusion 

The manure samples evaluated here illustrate the wide variabil- 
ity in concentrations of nutrients and CECs in manure ( Larney and 
Hao, 2007 ). While most of our results reflect general trends reported 
previously, including temporal fluctuations, a few new observations 
were made. Despite the wide range of N:P:K ratios, the median C:N ra- 
tio of 12:1 suggests that N will be readily plant available and thus dairy 
manure is a potentially good source of soil fertility. Manure concen- 
trations of Cu and Zn reported herein were similar to those reported 
in other studies. The high organic matter content of dairy manure 
strongly binds the metals, thereby decreasing their bioavailability and 
mobility through soil. The manure hormone concentrations measured 
in this study were similar to those reported in the literature, and the 
temporal changes illustrate the large variability among dairy manures. 
Phytoestrogens were the most prevalent of all emerging contaminants 
detected in the manure samples and their high concentration in dairy 
manure is a potential concern because they can significantly disrupt 
endocrine function in aquatic organisms. 

Veterinary pharmaceuticals and antibiotics were frequently found 
in the dairy manure samples. This is the first study to document the 
presence of flunixin, a non-steroidal anti-inflammatory drug, in solid 
stacked manure from commercial dairy operations. Monensin, one of 
the few antibiotics permitted in lactating cows, was found most fre- 
quently and in the greatest concentrations. While the distribution and 
concentration of antibiotics varied among manure samples, Class 1 in- 
tegrons and IncQ1 plasmids that facilitate the transmission of ARGs 
were found in all samples. Given the widespread nature of these ge- 
netic elements in dairy manure, they could function as biomarkers for 
assessing the effect of land-application of dairy manure on antibiotic 
resistance spread in Southern Idaho. 
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