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Introduction

With the rapid development of industry and urbanization,
China’s air pollution has become a severe issue during the
past decades (Chan et al.,, 2019; Wang et al., 2017a; Wang et al.,
2017b). High concentrations of PM, s and O3 may pose a huge
threat to public health and are closely related to premature
death (Cohen et al., 2017; Zhang et al., 2017). Since 2013, the
Chinese government has committed to improving air qual-
ity and formulated a series of prevention and control mea-
sures, such as the Air Pollution Prevention and Control Action
Plan (APPCAP) in 2013 and the Clean Air Action Plan during
2018-2020 (Ding et al., 2019; Ma et al., 2019; Wang et al., 2020b).
The annual mean PM, 5 concentration dropped by 30% to 50%
across China over the 2013-2018 period (Zhai et al., 2019). Al-
though the control of PM; s has made substantial progress, the
slight increase in surface ozone concentration especially for
urban areas has brought more complex challenges (Li et al,,
2019b; Lu et al., 2018). Compared with 2013, the average 90-th
percentiles of maximum daily 8-hour O; concentrations in-
creased by 20.1% in 74 cities over China in 2017 (Lu et al., 2020).

Previous studies (e.g., Li et al., 2019b) have proven that
strengthening the control of PM, s precursor emissions may
aggravate Os pollution due to the complex photochemical
interaction between O3 and PM,s. Strategies that are con-
ducive to reducing PM, s concentration may change the ra-
tio of NOx-VOC, thereby adversely affecting the control of O3
(Lu et al., 2020). In addition, the reduction of PM,s may in-
hibit the aerosol absorption of free radicals such as N,Os and
HO,, which leads to an increase in the oxidation capacity of
the atmosphere, and the O3 concentration is further increased
through photochemical reactions (Li et al., 2019a; Lou et al.,
2014). However, Tan et al., 2020 argued that HO, uptake on
aerosol did not significantly affect the ozone production rate
in the North China Plain in 2014. It is worth noticing that dur-
ing the emission control period, meteorological factors (such
as temperature, wind, relative humidity, short-wave radiation,
etc.) will also have a significant impact on the formation,
transportation, and diffusion of PM,s and O; (Cheng et al.,
2019; Li et al., 2017). Therefore, in the purpose of realizing the
joint control of PM, s and Os, it is necessary to consider the
influence of both emissions of precursor gases and meteoro-
logical factors.

Due to the COVID-19 epidemic since January 2020, China
has adopted a series of shutdown measures, which provided
an excellent opportunity to evaluate the response of air pol-
lutants to major emission reductions (Le et al., 2020). The
rapid interruption of road traffic and manufacturing has led
to a sharp reduction in anthropogenic emissions and a sig-
nificant improvement in air quality (Wang et al., 2020a). In
most cities, the concentration of PM,s has decreased al-
though the pollution of O3 has increased slightly (Chu et al.,
2021; Sicard et al., 2020). Unexpectedly, cities in northern
China, especially Beijing-Tianjin-Hebei (BTH) regions, expe-
rienced PM, s concentration increases during the lockdown
(Huang et al., 2020). This unexpected increase is related to
the secondary formation of aerosols (Zheng et al., 2020).
In addition to strict lockdown measures, the adverse ef-
fects of weather conditions are easily overlooked and diffi-

cult to quantify during the COVID-19 lockdown (Wang et al.,
2020a).

In this study, an observation-based statistical model, Gen-
eralized Additive Model (GAM), is implemented to character-
ize the nonlinear response of PM, s and O3 hourly measure-
ments to meteorological variables and precursor gases for
Beijing, Shanghai, Guangzhou, and Wuhan respectively, dur-
ing 2018-2020. Differ from physical-based models, data-driven
statistical techniques including GAMs do not rely on the use of
atmospheric principles. Compared to machine learning tech-
niques, GAMs have the advantage of better interpretability,
which are rather important for the understanding and con-
trol of air pollution. The GAMs model can explicitly quantify
the PM, 5 and O3 concentration trends with response to indi-
vidual covariates including meteorological variables and pre-
cursor gases. Based on GAMs analysis, we have quantified the
relative contributions of meteorological factors and precursor
emissions and assessed the main driving forces for changes in
PM, s and O3 concentrations before and after the implemen-
tation of the lockdown measures for these cities.

This paper is organized as follows: first, we introduced the
data and methods that were used; second, we discussed the
change trends of PM, 5 and O3 concentrations in the four cities
from 2018 to 2020 and the relative contributions of various fac-
tors; finally, we described the changes in pollutants during the
lockdown.

1. Materials and methods
1.1. Data

Hourly ERA-5 meteorological analyses datasets between
2014-2020 for Beijing, Shanghai, Guangzhou, and Wuhan
are available from European Centre for Medium-Range
Weather Forecasts (https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5, last access: 10 Jul 2021).
The weather elements include zonal wind (u), meridional
wind (v), temperature (T), pressure (P), relative humidity
(H), boundary layer height (B), downward shortwave solar
radiation (R), and precipitation (J). The hourly pollutant con-
centration data between 2014-2020 were obtained from the
national control site data of the China National Environmen-
tal Monitoring Centre (CNEMC). The involved air pollutants
include CO, O3, PM; 5, NO,, SO,, and PMyg. The larger fitted
temporal window of data samples more than just the research
period of 2018-2020 was used to the GAMs model to avoid
model underfitting and improve model robustness.

1.2. Generalized additive model

Generalized additive models were first proposed in 1980s,
by generalizing linear regressions and allowing additivity of
non-linear variance functions (Hastie and Tibshirani, 1987,
Ravindra et al., 2019). GAMs can automatically fit non-linear
relationships without having to manually try different trans-
formations (Ravindra et al., 2019).

GAM can use widely distributed (e.g., Normal distributions)
response variables, and use logarithm, inverse, and other link
functions to measure the influence of explanatory variables
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on the response variables. The GAM modeling on the daily
pollutant concentration series uses the logarithmic function
as the link function, as the following equation:

In(v) ~a+ 3 5(x) + ¢ &)

where, Y is the hourly series of pollutant concentration; « is
the mean value of Y; S(x;) is the non-parametric smoothing
functions of the ith variates x;; and ¢ is the fitting residual.
To ensure the robustness of model fitting, the Restricted Max-
imum Likelihood (REML) method is selected for smoothness
selection.

2. Results and discussion
2.1.  Temporal and spatial changes of pollutants

Fig. 1 shows the changes in the annual average concentra-
tion of major pollutants in the four cities of Beijing, Shang-
hai, Wuhan, and Guangzhou from 2018 to 2020. The average
relative changes of NO,, CO, O3, SO, PM, s and PMy, are -
21%, -9.19%, -0.56%, -28.83%, -20.99%, -25.47%, respectively. In
most cities, there are significant decreases in NO,, SO,, PM; s,
and PM;y. The annual average mass concentration of PM;s
dropped from 34.46-47.64 pg/m? in 2018 to 22.77-37.82 ug/m?
in 2020, reflecting the impact of the Clean Air Action Plan
control measures and COVID-19 lockdown. The largest reduc-
tion in SO, is likely to be related to the rapid development
of fuel desulphurization technology in industrial production
(iang et al., 2021; Liu et al., 2018). In contrast, the changes of
CO and O3 showed an increase or decrease with the difference
of regions, especially O3 showed different degrees of increase
in Wuhan and Guangzhou, respectively 0.92% and 4.65%. The
obvious increase of O3 is closely related to the decrease of
PM,s. As the decrease of aerosol concentration, higher solar
radiation at the ground surface can promote the occurrence
of photochemical reactions, which leads to the formation of
more ozone (Fan et al., 2020).

Fig. 2 shows the changing trends of NO,, CO, O3, SO,, PM; s,
and PM, on different time scales during the three years from
2018 to 2020 in Beijing. The pollutant concentration changes in
the other three cities are shown in the appendix (Figs. S1-S3).
Fig. 2 illustrates that each pollutant has an obvious seasonal
cycle. Most air pollutants show similar seasonal changes, with
high values in winter and low values in summer. Unlike other
pollutants, ozone has the opposite seasonality. The high tem-
perature and strong solar radiation in summer make the O3
concentration significantly higher than that in winter. In addi-
tion, the reduction of PM, 5 causes the aerosol deposition rate
of HO, radicals to slow down, which may also be beneficial to
the formation of O3 (Li et al., 2019a).

In addition to primary emissions including aerosols and
their precursor gases, meteorological conditions can also
affect the secondary formation and regional transport of
aerosols (Chen and Wang, 2015). Many previous studies have
shown that in recent years, the significant reduction in pollu-
tant concentration is closely related to the implementation of
strict emission control policies, while the effect of meteoro-

logical factors on air quality is relatively small (Liu et al., 2019;
Xu et al., 2018). For example, due to the implementation of the
Air Pollution Prevention and Control Action Plan (APPCAP), the
annual average concentration of PM,s in Beijing decreased
from 89.5 pg/m? in 2013 to 58 pg/m3 in 2017 (Cheng et al,,
2019). In addition, the air quality of cities in China has also
undergone significant changes during COVID-19. Determining
the relative contribution of favorable weather conditions and
emission reduction measures to air quality improvement will
help objectively evaluate the effectiveness of air quality con-
trol measures. Therefore, this study established a GAM model
to quantify the relative contribution of meteorological factors
and non-meteorological factors.

2.2.  Marginal effect of each covariate

We discussed the marginal effects of various influencing fac-
tors on PM, s and O3z based on the data from 2018 to 2020.
After considering the selection of the optimal variables, the
R? of GAM are in a range of 0.68-0.84 for PM,s and 0.70-
0.82 for O3, respectively, indicating that the model can bet-
ter explain the changes in O3 and PM,s concentrations. To
explain the marginal effects of each covariate on the con-
centration of PM,s and O3 in a more intuitive way, we use
100%:+[exp(S(x;))—1] to calculate the relative contribution of the
explanatory variable S(x;) to the response variable in the GAM
model (Figs. 3-4 and S4-S9). We choose Beijing as a typical city
for analysis. Figs. 3 and 4 discussed various meteorological
conditions, i.e., zonal wind (u), meridional wind (v), temper-
ature (T), pressure (P), relative humidity (H), boundary layer
height (B), downward shortwave solar radiation (R), and pre-
cipitation (J), and the marginal effects of precursor substances
such as NO,, CO, SO,. Note that each marginal effect is de-
noted by a solid line with a 95% confidence interval (dashed
lines), and the vertical lines adjacent to the lower x-axis repre-
sent the distributions of these covariates. The EDF for the GAM
smooth term is noted inside the bracket of the text. When EDF
is not equal to 1, it indicates that there is a nonlinear relation-
ship between the explanatory variable and the response vari-
able, and the larger the value, the more significant the nonlin-
ear relationship (Requia et al., 2019).

During the study period, the EDF of temperature and rela-
tive humidity were both greater than 1, indicating a non-linear
relationship to the response variable. Dry, hot weather is often
associated with high O3 events. Relative humidity has a cer-
tain scavenging effect on O3 and its precursors, which is signif-
icantly negatively correlated with changes in O3 concentration
(Fig. 4e). On the contrary, temperature and O3 concentration
have a significant positive nonlinear relationship. As the tem-
perature increases, the O3 concentration gradually increases
(Fig. 4c). However, a high-humidity and low-temperature en-
vironment is conducive to the dissolution of gaseous precur-
sors in liquid aerosols and accelerates the generation of PM; s
(Chang et al.,, 2020). Figs. 3c and 3e show that such an effect
becomes obvious when the temperature is higher than 275 K
and the humidity is higher than 40%.

In addition, Inter-regional pollution transmission is also
one of the main reasons for pollutant changes, which is
mainly adjusted by wind direction and wind speed. It is well
known that wind can dilute the concentration of pollutants
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Fig. 1 - The annual mean mass concentrations for six critical air pollutants (SO,, NO,, O3, GO, PM; 5, and PM;,) during
2018-2020. The mean values for the six pollutant gases are shown in different colors. Note that error bars are the standard

deviations of the monthly average.

and transport precursor substances. However, low wind speed
can promote the mixing of pollutants, thereby generating pre-
cursor substances such as NOyx, VOCs, and promoting the oc-
currence of photochemical reactions (Requia et al., 2019). As
shown in Fig. 4a-b, when the wind speed is lower than 2m/s,
as the wind speed increases, the O3 concentration increases.
To better understand the relative contribution of non-
meteorological factors, we should also focus on the impact of
precursor gases on the PM,s and O3 variation (Xiang et al.,
2020). NO3;~ and SO4%~ are generated by the gas-phase re-
actions of aerosol precursors (NOx and SO,), which are im-
portant components of secondary aerosols (Liu et al., 2021).
Tropospheric O3 is produced by NOy and VOCs in sunlight
(Wang et al., 2019). When the photo-stationary state between
O3 and NOy is destroyed by the intervention of RO, and HO,
from VOCs and CO, NO, produced by oxidation accumulates
O3 through photolysis (Atkinson, 2000). We can generally see

significant nonlinear relationships between the response vari-
ables and various precursor substances. There was an in-
crease in PM, s concentration when NO, and CO increased.
Meanwhile, the CI of NO, and CO concentration was relatively
narrow (Fig. 3i-j). In Fig. 3k, PM, 5 decreases with the increase
of SO,, showing a negative correlation, but the CI of SO, in-
creases a lot. There was a significantly negative correlation be-
tween O3 concentration and NO, (Fig. 4i). (Tobias et al., 2020)
pointed out that may be related to the type of O3 control.
Fig. 31 shows that there is a positive correlation between Os
and PM; s, which can be understood as a high concentration
of ozone that promotes the formation of secondary aerosols
(Ding et al., 2013; Zhu et al., 2019).

Additionally, meteorological variables such as boundary
layer height, atmospheric pressure, and shortwave radiation
also play an important role in the formation, diffusion, and
deposition of tropospheric pollutants. In sum, the combined
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effects of these variables can partially explain the seasonal
changes in air pollutants.

Figs. S10 and S11 show the comparison of daily meteorolog-
ical and non-meteorological smoothing items accumulated
during GAM modeling for PM, s and Os in Beijing, represented
by S(meteos) and S(non_meteos) respectively. The gaseous
pollutants in several other cities also showed similar results
(Figs. S12-S17). For PM, 5, the changing trend of S(non_meteos)
in major cities is basically the same as the daily concentration
change of PM; s, and the correlation coefficient (R) is between
0.67-0.90. However, S(meteos) has a poor correlation with daily
PM, 5 concentration (R = 0.17-0.59). On the contrary, the daily
O3 concentration changes in major cities are mainly related
to the changes in S(meteos) (R = 0.65-0.80) and are less af-
fected by S(non_meteos) (R = 0.29-0.59). Overall, weather and
meteorological conditions dominate the daily concentration
of O3 in the troposphere. Especially for megacities, the sea-
sonality in mid-to-high latitude regions is strong, while the
daily variation of PM, 5 is dominated by non-meteorological
factors.

2.3. Abnormalities during the epidemic

As it could be expected, the implementation of epidemic lock-
down measures will cause significant changes in the concen-
tration of pollutants, and also create an opportunity to quan-
tify the impact of artificial control and meteorological con-
ditions on pollutants. Many studies have shown that, during
the lockdown period, air pollution levels around the world
have dropped significantly (except for ozone) (Kerimray et al.,
2020; Nakada and Urban, 2020). It is worth noticing that al-
though PM, s concentration in most cities in China has de-
creased significantly, unexpected increases in PM, s concen-
tration have been found in the northern regions (Huanget al.,
2020; Wang et al., 2020a).

The concentration differences before and after the lock-
down are mainly attributed to the drastic measures to restrict
human movement and industrial activities (Otmani et al.,
2020). In addition, the role of meteorological factors during the
lockdown can not be ignored, but it has not been quantified
in most studies (Otmani et al., 2020; Zheng et al., 2020). We
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modeled based on the 2014-2020 datasets and discussed the
same period from 2019 and 2020 (January 1 to March 12). We
used data analysis to study the short-term impact of meteo-
rological factors on urban pollutant concentrations during the
epidemic, and the response of air quality to emission control.

We divided January 1 to March 12 into the pre-lockdown
period (January 1 to January 24), CNY and COVID-19 period
(January 24 to February 19), and post-lockdown period (Febru-
ary 19 to March 12). Figs. 5 and S18-S20 show the changes in
pollutant concentrations, meteorological factors, and anthro-
pogenic factors in each city in the three periods of 2019 and
2020, respectively. Compared to the pre-lockdown period, the
implementation of the lockdown measures has increased O3
levels in various cities to varying degrees (4.21 to 33.61 pg/m3),
which is considered to be related to less NOx under the type of
VOCs control (Tobias et al., 2020). Due to the significant reduc-
tion in vehicle exhaust and industrial production emissions,
the PM, 5 concentration in Shanghai, Guangzhou, and Wuhan
have a significant downward trend (11.05 to 20.87 pg/m3). On
the contrary, after the lockdown, Beijing’s PM, s concentration
has increased by 36.33 pg/m?3.

Our study found that compared to 2019, ozone concentra-
tion in each city rose significantly during the 2020 lockdown
period, but there were differences between different regions.
During the CNY and COVID-19 lockdown, the mass concen-

tration of Os in Beijing increased from 30.42 pg/m3 in 2019
to 50.75 pg/m3 in 2020 (Fig. 5a). The increase rates of O3 in
Guangzhou and Wuhan were comparable (38.80% and 48.15%,
respectively), which were much higher than the 8.63% and
15.22% in Beijing and Shanghai. The increase in ozone con-
centration in Shanghai and Wuhan is mainly related to the
change of S(non_meteos) (5.56 and 9.29 ug/m3, respectively),
which is about three times the contribution of S(meteos). The
contributions of the two factors in Beijing and Guangzhou are
equal. The difference is that both meteorological factors and
human factors in Guangzhou lead to an increase in ozone con-
centration, while S(meteos) and S(non_meteos) in Beijing have
the opposite effect. S(meteos) offset most of the increase in
Beijing O3 (-10.15 pg/m3).

Compared to 2019, the PM,s mass concentration in
Guangzhou, Shanghai, and Wuhan in 2020 has declined by
7.26 to 30.38 pg/m3. S(non_meteos) is the main influencing
factor of PM, 5 concentration in these cities (4.94-16.34 ug/m?),
which is much higher than the contribution of S(meteos) (0.81-
3.05 pg/m3). Both S(meteos) and S(non_meteos) are conducive
to the reduction of PM, 5 concentration in Wuhan, Guangzhou,
and Shanghai. The contribution of S(non_meteos) is 5.32-8.27
times that of S (meteos), indicating the reduction of coal com-
bustion in the secondary industry and the cessation of in-
dustrial activities were the main reasons for the reduction
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of PM, 5 concentration during the epidemic. Note that, unlike
the above discussion, the mass concentration of Beijing PM; 5
increased from 55.99 pg/m3 in 2019 to 56.88 pg/m3 in 2020
(Fig. 5b), which is similar to (Huang et al., 2020). Compared
to the pre-lockdown period, S(meteos) and S(non_meteos) in
Beijing increased by 8.83 and 11.05 pg/m3 during the CNY
and COVID-19 lockdown, respectively, indicating that unfavor-
able meteorological conditions and strict emission control to-
gether led to an abnormal increase in Beijing’s PMj; 5.

During the COVID-19 lockdown, Beijing’s frequent tem-
perature inversions, stagnant weather conditions, and high
humidity are all conducive to the rapid deposition of atmo-
spheric aerosols (Li et al., 2021). In addition, PM; 5 concentra-
tion has a complex nonlinear response to non-meteorological
factors such as emission control and quadratic forms.
Through PM,s source analysis, Liu et al., 2021 found that
S04%~ of NO3~/S04%~ gradually became the dominant com-
ponent during the Spring Festival. During the lockdown, al-
though mobile emission sources such as transportation were
effectively controlled, fixed sources such as household activi-
ties and large-scale heavy industries occupied a dominant po-
sition, offsetting part of the reduction in PM, s concentration.
Many studies have shown that during the COVID-19, PM, 5
tends to decrease in the primary formation and increase in
the secondary formation (Huang et al., 2020; Liu et al., 2021,
Zheng et al., 2020). Due to the increase of O3, NO3 at night

and HOy free radicals during the day, NOR and SOR are signif-
icantly increased, and the atmospheric oxidation capacity is
greatly enhanced, which promotes the heterogeneous chemi-
cal reaction of SO, and NOy, which is beneficial to the forma-
tion of secondary aerosols (Brown et al., 2006; Hallquist et al.,
2009; Kroll and Seinfeld, 2008). Therefore, during the COVID-
19 outbreak, Beijing’s PM, s pollution was an abnormal re-
sponse related to the secondary formation enhancement un-
der adverse weather conditions, still dense stationary source
emissions, and enhanced atmospheric oxidation capacity. It is
worth noticing that there are differences in PM, s changes in
different regions. The difference in PM, s trends between Bei-
jing and the other three cities may be related to the net chem-
ical production of inorganic aerosols such as nitrate, sulfate,
and ammonium (Huang et al., 2020).

3. Conclusions

In this study, based on the GAMs model analysis, we dis-
cussed the temporal trends and influencing factors of PM; s
and O3 concentrations in Beijing, Guangzhou, Shanghai, and
Wubhan, respectively, after the Clean Air Action Plan. Com-
pared to 2018, the PM, 5 concentration of the four cities in 2020
all has different degrees of reduction (7.82%-33.92%), while the
change of O3 varies from city to city (-6.77%-4.65%). Our re-
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outside the whisker are outliers.

search results show that after the start of the Clean Air Action
Plan, the implementation of the action plan played a leading
role in the decrease of daily PM,s concentration (R = 0.67-
0.90), and the change of daily O3 was closely related to me-
teorological factors (R = 0.65-0.80).

This study also investigated the relative contribution of
lockdown measures and meteorological factors to changes in
PM, 5 and O3 during the COVID-19 lockdown. Unlike previous
studies on the air quality changes due to the COVID-19 pan-
demic (Chan et al., 2021; Song et al., 2021; Zheng et al., 2021),
we furtherly decomposed PM; 5 and O3 trends from meteoro-

logical factors by using GAMs modeling. Then, the non-linear
relationships between precursor gases and PM, s or O3 varia-
tions are given in the form of the marginal effect of GAMs, iso-
lated from the impact of meteorology conditions. Compared
to chemical model-based analysis (Li et al., 2020; Zheng et al.,
2020), our method is rather simple but efficient by only using
observational data and statistical models.

Compared to the same period in 2019, the O3 of the four
cities showed varying degrees of growth (8.63%-48.15%) be-
fore and after the epidemic. Among them, the changes in O;
in Guangzhou and Wuhan were more significant (38.80% and
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48.15%, respectively), which may be related to strict lockdown
measures. In contrast, the PM, s concentration of Shanghai,
Guangzhou, and Wuhan has dropped significantly (14.75%-
40.04%), and the relative contribution of human factors is
about 5-8 times that of meteorological conditions. However,
there has been an unexpected increase in PM;s concentra-
tion in Beijing. The analysis of this study shows that this ab-
normal situation is caused by the combination of unfavorable
weather conditions and the intensive emissions during the
CNY and COVID-19 lockdown (8.83 and 11.05 pg/m?, respec-
tively). Therefore, the implementation of GAM to quantify the
relative contribution of meteorological conditions and anthro-
pogenic emissions to changes in the concentration of atmo-
spheric pollutants has important guiding significance for the
formulation of relevant measures and policies.
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