Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs

ZHANG Wei-jian , W.ZHU , S.HU


Received ,Revised , Accepted , Available online

Volume 17,2005,Pages 705-710

  • Summary
  • References
  • Related Articles
Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined microbial responses to cellulose and ammonium nitrate additions in three soils with very different C and N availability. These soils included an organic soil( 14.2% total organic C, with extremely high extractable N and low labile C), a forest soi1(4.7% total organic C, with high labile C and extremely low extractable N),and a grassland soil (1.6% total organic C, with low extractable N and labile C). While cellulose addition alone significantly enhanced microbial respiration and biomass C and N in the organic and grassland soils, it accelerated only the microbial respiration in the highly-N limited forest soil. These results indicated that when N was not limited, C addition enhanced soil respiration by stimulating both microbial growth and their metabolic activity. New C inputs lead to elevated C release in all three soils, and the magnitude of the enhancement was higher in the organic and grassland soils than the forest soil. The addition of cellulose plus N to the forest and grassland soils initially increased the microbial biomass and respiration rates, but decreased the rates as time progressed. Compared to cellulose addition alone,cellulose plus N additions increased the total C-released in the grassland soil, but not in the forest soil. The enhancement of total Creleased induced by C and N addition was less than 50% of the added-C in the forest soil after 96 d of incubation, in contrast to 87.5%and 89.0% in the organic and grassland soils. These results indicate that indigenous soil C and N availability substantially impacts the allocation of organic C for microbial biomass growth and/or respiration, potentially regulating the turnover rates of the new organic C inputs.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3