Special Issue for the 13th IWA International Specialist Conference

Control of petroleum-hydrocarbon contaminated groundwater by intrinsicand enhanced bioremediation

Ku-Fan Chen , Chih-Ming Kao , Chiu-Wen Chen , Rao Y. Surampalli , Mu-Sheng Lee


Received October 02, 2009,Revised December 24, 2009, Accepted , Available online

Volume 22,2010,Pages 864-871

  • Summary
  • References
  • Related Articles
In the first phase of this study, the e ectiveness of intrinsic bioremediation on the containment of petroleum hydrocarbons was evaluated at a gasoline spill site. Evidences of the occurrence of intrinsic bioremediation within the BTEX (benzene, toluene, ethylbenzene, and xylenes) plume included (1) decreased BTEX concentrations; (2) depletion of dissolved oxygen (DO), nitrate, and sulfate; (3) production of dissolved ferrous iron, methane, and CO2; (4) deceased pH and redox potential; and (5) increased methanogens, total heterotrophs, and total anaerobes, especially within the highly contaminated areas. In the second phase of this study, enhanced aerobic bioremediation process was applied at site to enhance the BTEX decay rates. Air was injected into the subsurface near the mid-plume area to biostimulate the naturally occurring microorganisms for BTEX biodegradation. Field results showed that enhanced bioremediation process caused the change of BTEX removal mechanisms from anaerobic biodegradation inside the plume to aerobic biodegradation. This variation could be confirmed by the following field observations inside the plume due to the enhanced aerobic bioremediation process: (1) increased in DO, CO2, redox potential, nitrate, and sulfate, (2) decreased in dissolved ferrous iron, sulfide, and methane, (3) increased total heterotrophs and decreased total anaerobes. Field results also showed that the percentage of total BTEX removal increased from 92% to 99%, and the calculated total BTEX first-order natural attenuation rates increased from 0.0092% to 0.0188% per day, respectively, after the application of enhanced bioremediation system from the spill area to the downgradient area (located approximately 300 m from the source area).

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3