Environmental biology

Evaluation of the infectivity, gene and antigenicity persistence of rotaviruses by free chlorine disinfection


Dan Li , April Z. Gu , Siyu Zeng , Wan Yang , Miao He , Hanchang Shi

DOI:10.1016/S1001-0742(10)60623-7

Received December 23, 2010,Revised March 01, 2011, Accepted , Available online

Volume 23,2011,Pages 1691-1698

The effects of free chlorine disinfection of tap water and wastewater effluents on the infectivity, gene integrity and surface antigens of rotaviruses were evaluated by a bench-scale chlorine disinfection experiments. Plaque assays, integrated cell culture-quantitative RT-PCR (ICC-RT-qPCR), RT-qPCR, and enzyme-linked immunosorbent assays (ELISA), respectively, were used to assess the influence of the disinfectant on virus infectivity as well as genetic and antigenic integrity of simian rotavirus SA11 as a surrogate for human rotaviruses. The ICC-RT-qPCR was able to detect rotaviruses survival from chlorine disinfection at chlorine dose up to 20 mg/L (60 min contact), which suggested a required chlorine dose of 5 folds (from 1 to 5 mg/L) higher than that indicated by the plaque assay to achieve 1.8 log10 reductions in tap water with 60 min exposing. The VP7 gene was more resistant than the infectivity and existed at chlorine dose up to 20 mg/L (60 min contact), while the antigencity was undetectable with chlorine dose more than 5 mg/L (60 min contact). The water quality also impacted the inactivation efficiencies, and rotaviruses have a relatively higher resistant in secondary effluents than in the tap water under the same chlorine disinfection treatments. This study indicated that rotaviruses have a higher infectivity, gene and antigencity resistance to chlorine than that previously indicated by plaque assay only, which seemed to underestimate the resistance of rotaviruses to chlorine and the risk of rotaviruses in environments. Present results also suggested that re-evaluation of resistance of other waterborne viruses after disinfections by more sensitive infectivity detection method (such as ICC-RT-qPCR) may be necessary, to determine the adequate disinfectant doses required for the inactivation of waterborne viruses.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3