Aquatic environment

Environmental significance of biogenic elements in surface sediments of the Changjiang Estuary and its adjacent areas


Yu Yu , Jinming Song , Xuegang Li , Huamao Yuan , Ning Li , Liqin Duan

DOI:10.1016/S1001-0742(12)60302-7

Received January 11, 2013,Revised May 03, 2013, Accepted , Available online November 01, 2013

Volume ,2013,Pages 2185-2195

Biogenic elements and six phosphorus (P) fractions in surface sediments from the Changjiang Estuary and adjacent waters were determined to investigate the governing factors of these elements, and further to discuss their potential uses as paleo-environment proxies and risks of P release from sediment. Total organic carbon (TOC) and leachable organic P (Lea-OP) showed high concentrations in the estuary, Zhejiang coast and offshore upwelling area. They came from both the Changjiang River and marine biological input. Biogenic silicon (BSi) exhibited a high concentration band between 123 and 124°E. BSi mainly came from diatom production and its concentration in the inshore area was diluted by river sediment. Total nitrogen (TN) was primarily of marine biogenic origin. Seaward decreasing trends of Fe-bound P and Al-bound P revealed their terrestrial origins. Influenced by old Huanghe sediment delivered by the Jiangsu coastal current, the maximum concentration of detrital P (Det-P) was observed in the area north of the estuary. Similar high concentrations of carbonate fluorapatite (CFA-P) and CaCO3 in the southern study area suggested marine calcium-organism sources of CFA-P. TOC, TN and non-apatite P were enriched in fine sediment, and Det-P partially exhibited coarse-grain enrichment, but BSi had no correlation with sediment grain size. Different sources and governing factors made biogenic elements and P species have distinct potential uses in indicating environmental conditions. Transferable P accounted for 14%-46% of total P. In an aerobic environment, there was low risk of P release from sediment, attributed to excess Fe oxides in sediments.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3