Regular Articles

Enhanced photoelectrocatalytic degradation of ammonia by in situ photoelectrogenerated active chlorine on TiO2 nanotube electrodes


Shuhu Xiao , Dongjin Wan , Kun Zhang , Hongbin Qu , Jianfeng Peng

DOI:10.1016/j.jes.2016.04.028

Received January 31, 2016,Revised March 31, 2016, Accepted April 25, 2016, Available online September 02, 2016

Volume 28,2016,Pages 103-108

TiO2 nanotube (TiNT) electrodes anodized in fluorinated organic solutions were successfully prepared on Ti sheets. Field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were performed to characterize the TiNT electrodes. The linear voltammetry results under irradiation showed that the TiNT electrode annealed at 450°C presented the highest photoelectrochemical activity. By combining photocatalytic with electrochemical process, a significantly synergetic effect on ammonia degradation was observed with Na2SO4 as supporting electrolyte at pH 10.7. Furthermore, the photoelectrocatalytic efficiency on the ammonia degradation was greatly enhanced in presence of chloride ions without the limitation of pH. The degradation rate was improved by 14.8 times reaching 4.98 × 10− 2 min− 1 at pH 10.7 and a faster degradation rate of 6.34 × 10− 2 min− 1 was obtained at pH 3.01. The in situ photoelectrocatalytic generated active chlorine was proposed to be responsible for the improved efficiency. On the other hand, an enhanced degradation of ammonia using TiNT electrode fabricated in fluorinated organic solution was also confirmed compared to TiNT electrode anodized in fluorinated water solution and TiO2 film electrode fabricated by sol–gel method. Finally, the effect of chloride concentration was also discussed.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3