Comparing the removal of polycyclic aromatic hydrocarbons in soil after different bioremediation approaches in relationto the extracellular enzyme activities


Zdeněk Košnář , Tereza Částková , Lucie Wiesnerová , Lukáš Praus , Ivan Jablonský , Martin Koudela , Pavel Tlustoš

DOI:10.1016/j.jes.2018.05.007

Received January 07, 2018,Revised , Accepted May 09, 2018, Available online May 18, 2018

Volume 31,2019,Pages 249-258

A 120-day experiment was conducted to compare the removal of polycyclic aromatic hydrocarbons (PAHs) from agricultural soil after natural attenuation (NA), phytoremediation (P), mycoremediation (M), and plant-assisted mycoremediation (PAM) approaches in relation to the extracellular enzyme activities in soil. The NA treatment removed the total soil PAH content negligibly. The P treatment using maize (Zea mays) enhanced only the removal of low and medium molecular PAHs. The Pleurotus ostreatus cultivated on 30–50 mm wood chip substrate used in M treatment was the most successful in the removal of majority PAHs. Therefore, significantly (p < 0.05) highest total PAH removal by 541.4 μg/kg dw (dry weight) (36%) from all tested M treatments was observed. When using the same fungal substrate together with maize in PAM treatment, the total PAH removal was not statistically different from the previous M treatment. However, the maize-assisted mycoremediation treatment significantly boosted fungal biomass, microbial and manganese peroxidase activity in soil which strongly correlated with the removal of total PAHs. The higher PAH removal in that PAM treatment could be reflected in the following post-harvest time. Our suggested M and PAM approaches could be promising in situ bioremediation strategies for PAH-contaminated soils.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3