Characteristics of atmospheric volatile organic compounds in urban area of Beijing: Variations, photochemical reactivity and source apportionment


Yizhen Chen , Lihui Zhang , Hong Li , Zhenhai Wu , Weiqi Zhang , Kankan Liu , Xi Cheng , Yujie Zhang , Bin Li , Tao WANG , Jianmin CHEN , Abdelwahid Mellouki , Christian GEORGE , Yujing MU

DOI:10.1016/j.jes.2020.03.023

Received September 30, 2019,Revised , Accepted March 17, 2020, Available online May 04, 2020

Volume 32,2020,Pages 190-200

Atmospheric volatile organic compounds (VOCs) were observed by an on-line gas chromatography-flame ionization detector monitoring system from November 2016 to August 2017 in Beijing. The average concentrations were winter (40.27 ± 25.25 μg/m3) > autumn (34.25 ± 19.90 µg/m3) > summer (32.53 ± 17.39 µg/m3) > spring (24.72 ± 17.22 µg/m3). Although benzene (15.70%), propane (11.02%), ethane (9.32%) and n-butane (6.77%) were the most abundant species, ethylene (14.07%) and propene (11.20%) were the key reactive species to ozone formation potential (OFP), and benzene, toluene, ethylbenzene, m-xylene + p-xylene and o-xylene (54.13%) were the most reactive species to secondary organic aerosol formation potential (SOAFP). The diurnal and seasonal variations indicated that diesel vehicle emission during early morning, gasoline vehicle emission at the traffic rush hours and coal burning during the heating period might be important sources. Five major sources were further identified by positive matrix factorization (PMF). The vehicle exhaust (gasoline exhaust and diesel exhaust) was found to be contributed most to atmospheric VOCs, with 43.59%, 41.91%, 50.45% and 43.91%, respectively in spring, summer, autumn and winter; while solvent usage contributed least, with 11.10%, 7.13%, 14.00% and 19.87%, respectively. Biogenic emission sources (13.11%) were only identified in summer. However, both vehicle exhaust and solvent usage were identified to be the key sources considering contributions to the OFP and SOAFP. Besides, the contributions of combustion during heating period and gasoline evaporation source during warm seasons to OFP and SOAFP should not be overlooked.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3