Fabrication of electrochemically-modified BiVO4-MoS2-Co3O4composite film for bisphenol A degradation


Qi Wang , Yanqing Cong , Wenhua Zhang , Wenchen Ding , Tongtong Zhang , Yi Zhang , Nianping Chi

DOI:10.1016/j.jes.2020.09.027

Received July 28, 2020,Revised , Accepted September 24, 2020, Available online October 20, 2020

Volume 102,2021,Pages 341-351

A new electrochemically-modified BiVO4-MoS2-Co3O4 (represented as E-BiVO4-MoS2-Co3O4) thin film electrode was successfully synthesized for environmental application. MoS2 and Co3O4 were grown on the surface of BiVO4 to obtain BiVO4-MoS2-Co3O4. E-BiVO4-MoS2-Co3O4 film was achieved by further electrochemical treatment of BiVO4-MoS2-Co3O4. The as-prepared E-BiVO4-MoS2-Co3O4 exhibited significantly enhanced photoelectrocatalytic activity. The photocurrent density of E-BiVO4-MoS2-Co3O4 thin film is 6.6 times that of BiVO4 under visible light irradiation. The degradation efficiency of E-BiVO4-MoS2-Co3O4 for bisphenol A pollutant was 81.56% in photoelectrochemical process. The pseudo-first order reaction rate constant of E-BiVO4-MoS2-Co3O4 film is 3.22 times higher than that of BiVO4. And its reaction rate constant in photoelectrocatalytic process is 14.5 times or 2 times that in photocatalytic or electrocatalytic process, respectively. The improved performance of E-BiVO4-MoS2-Co3O4 was attributed to the synergetic effects of the reduction of interfacial charge transfer resistance, the formation of oxygen vacancies and sub-stoichiometric metal oxides and higher separation efficiency of photogenerated electron-hole pairs. E-BiVO4-MoS2-Co3O4 is a promising composite material for pollutants removal.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3