Evaluating the biotoxicity of surface water in a grassy lake in North China

Baoqing Shan , Xin Meng , Wenqiang Zhang


Received July 08, 2020,Revised , Accepted September 26, 2020, Available online October 20, 2020

Volume 102,2021,Pages 316-325

The biological toxicity of aquatic ecosystems should be considered when assessing the effects of toxicity on the water environment. The aim of this study was to identify the main pollutants in the Baiyangdian (BYD) and the factors that contribute to biological toxicity. We determined various physical and chemical indicators in the surface water of the BYD, including nutrients and heavy metals, and the biological toxicity. We also explored the sources of the main pollutants and how the pollutants contributed to toxicity in the lake, using correlation analysis and an index of the biological toxicity. The results showed that total nitrogen (TN), ammoniacal nitrogen (NH4+-N), chromium (Cr), and zinc (Zn) were the main pollutants in the BYD surface water. The average concentration of Cr was 2.3 times greater than the Class V threshold, and the concentrations at about 65% of the sampling points, mainly those in the southern part of the BYD, exceeded the threshold standard. The average concentration of Zn was 1.25 times higher than the Class V threshold, with the concentrations of about 35% of the samples greater than the threshold concentration. The integrated toxicity of the surface water to luminescent bacteria ranged from 0.51% to 58%, and averaged 24.07%, which was within the range of moderate toxicity. The inhibition rates were high near Diantou (59%) and Duan (51.6%). The pollutant levels in the BYD tend to be related to the population density, with pollution mainly caused by sewage and domestic garbage, with little influence from local industries. Cr and TN were strongly correlated, but the biological toxicity was not correlated with any of the individual environmental indicators, which suggests that the toxicity in the surface water of the BYD reflected the combined effects of the environmental factors, rather than a single factor. The information from this study, about the main pollutants and the relationships between the physical and chemical properties of the surface water in the BYD, can be used to support plans for restoring the BYD.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3