The role of metal oxides on oxidant decay and disinfection byproduct formation in drinking waters: Relevance to distribution systems


Chao Liu

DOI:10.1016/j.jes.2021.03.034

Received March 19, 2021,Revised , Accepted March 19, 2021, Available online April 10, 2021

Volume 33,2021,Pages 140-149

Maintaining a residual disinfectant/oxidant (e.g., chlorine and chlorine dioxide), is a generally used strategy to control microbial contaminants and bacterial regrowth in distribution systems. Secondarily oxidant, such as hypobromous acid (HOBr), can be formed during chlorination of bromide-containing waters. The decay of oxidants and formation of disinfection byproducts (DBPs) due to the interaction between oxidants and selected metal oxides were studied. Selected metal oxides generally enhanced the decay of these halogen-containing oxidants via three pathways: (1) catalytic disproportionation to yield an oxidized form of halogen (i.e., halate) and reduced form (halide for chlorine and bromine or chlorite for chlorine dioxide), (2) oxygen formation, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly strong abilities for the first pathway, and oxygen formation was a side reaction. Cuprous oxide can react with oxidants via the third pathway, while goethite was not involved in these reactions. The ability of CuO on catalytic disproportionation of HOBr remained stable up to four cycles. In chlorination process, bromate formation tends to be important (exceeding 10 µg/L) when initial bromide concentration is above 400 µg/L in the presence of dissolved organic matter. Increasing initial bromide concentrations increased the formation of DBPs and calculated cytotoxicity, and the maximum was observed at pH 8.6 during chlorination process. Therefore, the possible disinfectant loss and DBP formation should be carefully considered in drinking water distribution systems.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3