Characterization and source identification of submicron aerosol during serious haze pollution periods in Beijing


Yuesi Wang , Peng Xu , Yuan Yang , Junke Zhang , Wenkang Gao , Zirui Liu , Bo Hu

DOI:10.1016/j.jes.2021.04.005

Received August 14, 2020,Revised , Accepted April 09, 2021, Available online May 27, 2021

Volume 34,2022,Pages 25-37

Submicron aerosol is of extensive concern not only due to its significant impact on air quality but also because it is detrimental to human health. In this study, we investigated the characteristics, sources and chemical processes of submicron aerosol based on real-time online measurements of submicron aerosols (NR-PM1) during December 2015 at an urban site in Beijing. The average mass concentration of NR-PM1 was 92.5±84.9 µg/m3, the hourly maximum was 459.1 µg/m3 during the entire observation. The organic aerosol (OA) (55%) was the largest contributor to NR-PM1. The average mass concentration of PAHs was 0.217±0.247 µg/m3, exhibiting the highest concentration at night and the lowest levels in the daytime. The average mass concentration of organic nitrate was 2.52±2.36 µg/m3 and that of inorganic nitrate was 7.62±8.22 µg/m3, accounting for 36% and 64%, respectively, of the total nitrate mass. Positive matrix factorization (PMF) differentiated the OA into five chemical components including LV-OOA, SV-OOA, COA, HOA and CCOA, accounting for 22%, 16%, 13%, 25% and 24% respectively, of the total OA. The average NR-PM1 mass concentration on the heavy polluted days (HPD) was 182.8±70.2 µg/m3, which was approximately 9 times that on clean days (CD). The enhanced secondary formation of SNA was evident on HPD, especially the rapid increase of sulfate (23%) and nitrate (19%).

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3