A novel co-catalyzed system between persulfate and chlorite by sonolysis for removing triphenylmethane derivative

Yibo Yu , Qihui Xu , Haoran Leng , Hong You , Shutao Wang , Haoyang Li


Received February 16, 2021,Revised , Accepted May 09, 2021, Available online June 09, 2021

Volume 34,2022,Pages 291-306

Triphenylmethane (tpm) derivatives (e.g. tpmCV) have threatened the safety of the aquatic environment due to the potential toxicity and carcinogenicity. In this study, the novel ultrasonic/persulfate/chlorite (US/S2O82−/ClO2) oxidation process was developed for the effective removal of tpmCV in wastewater. The apparent non-integer kinetics (n around 1.20) of tpmCV degradation under different factors (R2Adj > 0.990) were investigated, respectively. Inhibiting effects of anions were greater than those of cations (except Fe(II/III)). The adding of micromolecule organic acids could regulate degradation towards positive direction. The double response surface methodology (RSM) was designed to optimize tpmCV removal process, and the acoustic-piezoelectric interaction was simulated to determine the propagation process of acoustic wave in the reactor. The possible degradation pathway was explored to mainly include carbonylation, carboxylation, and demethylation. The estimated effective-mean temperature at the bubble-water interface was calculated from 721 to 566 K after introducing the ClO2, however, the adsorption or partitioning capacity of tpmCV in the reactive zone was widened from 0.0218 to 0.0982. The proposed co-catalysis of US/S2O82−/ClO2 was based on the determined active species mainly including ClO2, SO4, and OH. Compared with other US-based processes, the operating cost (3.97 $/m3) of US/S2O82−/ClO2 with the EE/O value (16.8 kWh/m3) was relatively reduced.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3