An intercomparison of ozone taken from the Copernicus atmosphere monitoring service and the second Modern-Era retrospective analysis for research and applications over China during 2018 and 2019


Zifa Wang , Yujing Zhang , Jie Li , Jianjun Li , Xiaole Pan , Wei Wang , Lili Zhu , Zixi Wang , Xueshun Chen , Wenyi Yang , Maofa Ge , Yujing Mu , Jianmin Chen , Min Shao

DOI:10.1016/j.jes.2022.01.045

Received May 30, 2021,Revised , Accepted January 29, 2022, Available online February 07, 2022

Volume 34,2022,Pages 514-525

Spatiotemporal variations of ozone (O3) taken from the Copernicus Atmosphere Monitoring Service (CAMS) and the second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) were intercompared and evaluated with ground and ozone-sonde observations over China in 2018 and 2019. Intercomparison of the surface ozone from CAMS and MERRA-2 reanalysis showed significant negative bias (CAMS minus MERRA-2, same below) at Tibetan Plateau of up to 80 µg/m3, and the average R2 was about 0.6 across China. Evaluated with the ground observations from China National Environmental Monitoring Center (CNEMC), we found that CAMS and MERRA-2 reanalysis were capable of capturing the key patterns of monthly and diurnal variations of surface ozone over China except for the western region, and MERRA-2 overestimated the observations compared to CAMS. Vertically, the CAMS profiles overestimated the ozone-sonde from the World Ozone and Ultraviolet Radiation Data Center (WOUDC) above 200 hPa with the magnitude reaching up to 150 µg/m3, while little bias was found between the reanalysis and observations below 200 hPa. Intercomparison drawn from the vertical distribution between CAMS and MERRA-2 reanalysis showed that the negative bias appeared throughout the troposphere over China, while the positive bias emerged in the upper troposphere and lower stratosphere (UTLS) with high order of magnitude exceeding 100 µg/m3, indicating large uncertainties at higher altitudes. In summary, we concluded that CAMS reanalysis showed better agreement with the observations in contrast to MERRA-2, and the large discrepancy especially at higher altitudes between these two reanalysis datasets could not be ignored.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3