Stimulants and donors promote megaplasmid pND6-2 horizontal gene transfer in activated sludge

Wei Yan , Shan Wang , Shanshan Li , Dan Du , Olusegun K. Abass , Muhammad Salman Nasir


Received November 19, 2021,Revised , Accepted March 03, 2022, Available online March 14, 2022

Volume 35,2023,Pages 742-753

The activated sludge process is characterized by high microbial density and diversity, both of which facilitate antibiotic resistance gene transfer. Many studies have suggested that antibiotic and non-antibiotic drugs at sub-inhibitory concentrations are major inducers of conjugative gene transfer. The self-transmissible plasmid pND6-2 is one of the endogenous plasmids harbored in Pseudomonas putida ND6, which can trigger the transfer of another co-occurring naphthalene-degrading plasmid pND6-1. Therefore, to illustrate the potential influence of stimulants on conjugative transfer of pND6-2, we evaluated the effects of four antibiotics (ampicillin, gentamycin, kanamycin, and tetracycline) and naphthalene, on the conjugal transfer efficiency of pND6-2 by filter-mating experiment. Our findings demonstrated that all stimulants within an optimal dose promoted conjugative transfer of pND6-2 from Pseudomonas putida GKND6 to P. putida KT2440, with tetracycline being the most effective (100 µg/L and 10 µg/L), as it enhanced pND6-2-mediated intra-genera transfer by approximately one hundred-fold. Subsequently, seven AS reactors were constructed with the addition of donors and different stimulants to further elucidate the conjugative behavior of pND6-2 in natural environment. The stimulants positively affected the conjugal process of pND6-2, while donors reshaped the host abundance in the sludge. This was likely because stimulant addition enhanced the expression levels of conjugation transfer-related genes. Furthermore, Blastocatella and Chitinimonas were identified as the potential receptors of plasmid pND6-2, which was not affected by donor types. These findings demonstrate the positive role of sub-inhibitory stimulant treatment on pND6-2 conjugal transfer and the function of donors in re-shaping the host spectrum of pND6-2.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3