Polystyrene nanoplastics induce glycolipid metabolism disorder via NF-κB and MAPK signaling pathway in mice


Ning Gu , Xingpei Fan , Xiaoyan Li , Jiaxin Li , Yuxia Zhang , Xiangjuan Wei , Hailong Hu , Boya Zhang , Haining Du , Meimei Zhao , Ruijiao Zhu , Daqian Yang , Yuri Oh

DOI:10.1016/j.jes.2023.02.040

Received September 12, 2022,Revised , Accepted February 21, 2023, Available online March 02, 2023

Volume 36,2024,Pages 553-566

Nanoplastics-induced developmental and reproductive toxicity, neurotoxicity and immunotoxicity are a focus of widespread attention. However, the effects of nanoplastics (NPs) on glycolipid metabolism and the precise underlying mechanisms are unclear at present. Here, we showed that oral administration of polystyrene nanoparticles (PS-NPs) disrupts glycolipid metabolism, with reactive oxygen species (ROS) identified as a potential key signaling molecule. After PS-NPs treatment, excessive production of ROS induced the inflammatory response and activated the antioxidant pathway through nuclear factor-erythroid factor 2-related factor 2. The activation of nuclear factor-κB (NFκB) signaling pathway induced the phosphorylation of the mitogen-activated protein kinases (MAPK) signaling pathway, which induced the activation of extracellular regulated kinases (ERK) and p38. Constitutive activation of the MAPK signaling proteins induced high continued phosphorylation of insulin receptor substrate-1, in turn, leading to decreased protein kinase B (Akt) activity, which weakened the sensitivity of liver cells to insulin signals and induced insulin resistance. In parallel, phosphorylation of Akt led to loss of control of FoXO1, a key gene of gluconeogenesis, activating transcription of glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase (PEPCK) in a manner dependent on PGC1α. Moreover, the activated ERK promoted lipid accumulation through ERK-PPARγ cascades. Therefore, sterol regulatory element-binding protein-1 and levels of its downstream lipogenic enzymes, ACC-1, were up-regulated. Upon treatment with the antioxidant resveratrol, PS-NPs-induced glucose and lipid metabolic disorders were improved by inhibiting ROS-induced activation of NFκB and MAPK signaling pathway in mice. Based on above, PS-NPs exposure disrupts glycolipid metabolism in mice, with ROS identified as a potential key signaling molecule.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3