Recent Published Articles

Remarkable N2-selectivity enhancement of NH3-SCR over HPMo modified MnCo-BTC@SiO2 catalyst


Ning Luo , Songjin Ko , Xiaolong Tang , Fengyu Gao , Honghong Yi , Hengheng Liu

DOI:10.1016/j.jes.2023.03.037

Received January 05, 2023,Revised , Accepted March 26, 2023, Available online April 07, 2023

Volume 36,2024,Pages 482-495

In this work, the phosphomolybdate (HPMo) modification strategy was applied to improve the N2 selectivity of MnCo-BTC@SiO2 catalyst for the selective catalytic reduction of NOx, and further, the mechanism of HPMo modification on enhanced catalytic performance was explored. Among MnCo-BTC@SiO2-x catalysts with different HPMo concentrations, MnCo-BTC@SiO2-0.75 catalyst exhibited not only the highest NH3-SCR performance (∼95% at 200-300°C) but also the best N2 selectivity (exceed 80% at 100-300°C) due to the appropriate redox capacity, greater surface acidity. X-ray photoelectron spectrometer (XPS) and temperature programmed reduction of H2 (H2-TPR) results showed that the modification with HPMo reduced the oxidation-reduction performance of the catalyst due to electron transfer from Mo5+ to Mn4+/Mn3+ and prevent the excessive oxidation of ammonia adsorption species. NH3 temperature-programmed desorption of (NH3-TPD) results showed that the modification with HPMo could significantly improve the surface acidity and NH3 adsorption, which enhance the catalytic activity and N2 selectivity. In-situ diffused reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) revealed that modification with HPMo increased significantly the amount of adsorbed NH3 species on the Bronsted acid site and CB/CL, it suppressed the production of N2O by inhibiting the production of NH species, the deep dehydrogenation of ammonia adsorption species. This study provided a simple design strategy for the catalyst to improve the low-temperature catalytic performance and N2 selectivity.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3