Migration and transformation of Pb, Cu, and Zn during co-combustion of high-chlorine-alkaline coal and Si/Al dominated coal


Jie Xu , Jiangze Luo , Qiwei Yang , Jianqiao Wang , Boxiong Shen , Zhuozhi Wang , Qiqi Shi , Zhong Zhao , Chao Huang

DOI:10.1016/j.jes.2023.06.021

Received December 15, 2022,Revised , Accepted June 14, 2023, Available online June 20, 2023

Volume 36,2024,Pages 26-39

Shaerhu (SEH) coal is abundant in Xinjiang, China. The utilization of SEH suffers from severe ash deposition, slagging, and fouling problems due to its high-chlorine-alkaline characteristics. The co-combustion of high-alkaline coal and other type coals containing high Si/Al oxides has been proven to be a simple and effective method that will alleviate ash-related problems, but the risk of heavy metals (HMs) contamination in this process is nonnegligible. Hence, the volatilization rates and chemical speciation of Pb, Cu, and Zn in co-combusting SEH and a high Si/Al oxides coal, i.e., Yuanbaoshan (YBS) coal were investigated in this study. The results showed that the addition of SEH increased the volatilization rates of Pb, Cu, and Zn during the co-combustion at 800°C from 23.70%, 23.97%, and 34.98% to 82.31%, 30.01%, and 44.03%, respectively, and promoted the extractable state of Cu and Zn. In addition, the interaction between SEH and YBS inhibited the formation of the Pb residue state. SEM-EDS mapping results showed that compared to Zn and Cu, the signal intensity of Pb was extremely weak in regions where some of the Si and Al signal distributions overlap. The DFT results indicated that the O atoms of the metakaolin (Al2O3⋅2SiO2) (001) surface were better bound to the Zn and Cu than Pb atoms after adsorption of the chlorinated HMs. These results contribute to a better understanding of the effects of high-alkaline coal blending combustion on Pb, Cu, and Zn migration and transformation.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3